Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Weak Almost Periodicity and Uniform Continuity on a Locally Compact Quantum Group

R. FAAL and H. R. EBRAHIMI VISHKI*

Abstract

First we present some useful characterizations for the function spaces $AP(\mathbb{G})$, $WAP(\mathbb{G})$ and $LUC(\mathbb{G})$ on a locally compact quantum group \mathbb{G} and then we study some conditions under which $AP(\mathbb{G})$ and $WAP(\mathbb{G})$ are C*-algebras. We also investigate the equality $LUC(\mathbb{G}) = WAP(\mathbb{G})$.

2010 *Mathematics subject classification:* Primary 47L10, Secondary 46H25. *Keywords and phrases:* Locally compact quantum group, coamenable, (weak) almost periodicity, left uniform continuity.

1. Introduction

Let *G* be a locally compact group. It is known that the function spaces AP(G), WAP(G) and LUC(G) are C*-subalgebras of $C_b(G)$. Moreover, they enjoy the inclusion relations $AP(G) \subseteq WAP(G) \subseteq LUC(G)$, where the equality hold under some additional conditions. For example, it has been known that WAP(G) = LUC(G) if and only if *G* is compact. From the operator theory point of view, it is known that WAP(G) can be identified with $WAP(L^1(G))$. Also there is a characterization of left uniform continuity, namely $LUC(G) = L^{\infty}(G) \cdot L^1(G)$. For complete information with more details on these function spaces and their inclusion relashionships one may refer to [1].

We refer to [4] for the definitions and basic facts on Hopf von Neumann algebras and locally compact quantum groups. In [2] Daws showed that for an abelian Hopf von Neumann algebra (M, Γ) , $WAP(M_*) = \{x \in M : L_x : M_* \to M \text{ is weakly compact}\}$ and $AP(M_*) = \{x \in M : L_x : M_* \to M \text{ is compact}\}$ are C*-subalgebras of M. In [3] he defined $WAP(M, \Gamma)$ for an arbitrary Hopf von Neumann algebra (M, Γ) and proved that it is the largest C*-algebra contained in $WAP(M_*)$. However, in contrast to the situation for group, it was not known whether the equality $WAP(M_*) = WAP(M, \Gamma)$ holds. In this talk we show that for a coamenable locally compact quantum group \mathbb{G} , the spaces $WAP(L^1(\mathbb{G}))$ and $AP(L^1(\mathbb{G}))$ are C*-algebras and that $WAP(M_*) = WAP(M, \Gamma)$. We also define the notation of completely weakly compact operator for an arbitrary

^{*} speaker

2

R. FAAL, H. R. EBRAHIMI VISHKI

Hopf von Neumann algebra and we give a charaterization of $WAP(M, \Gamma)$ in terms of complete weak compactness of left translation operators. On the other hand Runde [5] showed that for certain locally compact quantum groups \mathbb{G} , $LUC(\mathbb{G})$ is a C*-algebra. In this talk we aslo improve Runde's result.

2. Main Results

For a Hopf von Neumann algebra M we define $CWAP(M_*)$ and we show the following result.

Theorem 2.1. Let M be a Hopf von Neumann algebra. Then

- (i) $CWAP(M_*)$ is equal to $WAP(M, \Gamma)$, and it is the largest C^* -algebra in $WAP(M_*)$.
- (ii) If M is abelian, then WAP(M*) = CWAP(M*), so WAP(M*) is a C*-subalgebra of M.

We give some new characterizations for $WAP(L^1(\mathbb{G})), AP(L^1(\mathbb{G}))$ and $LUC(\mathbb{G})$ from which we present the following results.

Theorem 2.2. Let \mathbb{G} be a coamenable locally compact quantum group. Then $WAP(L^1(\mathbb{G}))$ and $WAP(L^1(\mathbb{G}))$ are a C^* -algebras.

Theorem 2.3. Let \mathbb{G} be a locally compact quantum group such that $L^1(\mathbb{G})$ is strongly *Arens irregular. Then* $WAP(L^1(\mathbb{G})) = LUC(\mathbb{G})$ *implies that* \mathbb{G} *is compact.*

References

- J. BERGLUND, H. JUNGHENN AND P. MILNES, Analysis on Semigroups; Function Spaces, Compactifications, Representations, Wiley, New York, 1989.
- M. Daws, Characterising weakly almost periodic functionals on the measure algebra, *Studia Math.* 204 (2011) 213-234.
- [3] M. Daws, Non-commutative separate continuity and weakly almost periodicity for Hopf von Neumann algebras, J. Funct. Anal. 269 (2015) 683-704.
- [4] J. KUSTERMANS AND S. VAES, Locally compact quantum groups in the von Neumann algebraic setting, *Math. Scand.* **92** (2003), 68–92.
- [5] V. RUNDE, Uniform continuity over locally compact quantum groups, J. London Math. Soc. 80 (2009) 55-71.

R. FAAL,

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran. e-mail: faal.ramin@yahoo.com

H. R. Ebrahimi Vishki,

Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran. e-mail: vishki@um.ac.ir

www.SID.ir