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Abstract 

Liquefaction evaluation methods in sandy soils is generally based on the deterministic analysis. In the 

deterministic approach, certain and non-dispersion parameters are considered. Furthermore, in these 

methods, establishment of exact correlation between the probability of liquefaction (PL) and the factor of 

safety (Fs) is not possible. This problem is solved using the reliability analysis. In this paper, effect of the 

parameter uncertainty in liquefaction probability, based on the Gene Expression Programming (GEP) 

model for liquefaction resistance and potential evaluation based on Standard Penetration Test (SPT) is 

investigated. In order to verify the model, GEP results are compared with the results based on Idriss and 

Boulanger approach (2010). Then, First-Order Reliability Method (FORM) by using a hybrid of Particle 

Swarm Optimization and Genetic Algorithm (PSO-GA) in MATLAB2013a, as a robust optimization 

method is used to determine the reliability index (β). Bayesian mapping function is utilized to infer the 

relationship between probability of liquefaction and reliability index. Finally, effect of the level of 

parameter uncertainty on the liquefaction probability by development the Bayesian mapping functions, are 

investigated by using the β-PL curves. 

Keywords: Liquefaction, Gene Expression Programming, First Order Reliability Method, Hybrid 

algorithm (PSO-GA), Bayesian mapping function. 

 

 

1. INTRODUCTION 

 

Liquefaction occurrence is one of the most common causes of structural failures during earthquakes in saturated 

loose granular alluvium areas. Usually due to earthquake tensions in these regions, increasing   pore-water 

pressure and therefore, reduction and loss of soil strength will happen and finally, soil reaches liquid 

consistency state. This phenomenon accompanied by remarkable settlements and cracks, eruption of mud and 

water, sand boiling and ground water seepage through the pore spaces between particles of un-consolidated 

earth materials. Due to difficulties and high costs of intact and high quality sample preparation and also 

existence of simple methods based on on-site tests such as Standard Penetration Test (SPT), Cone Penetration 

Test (CPT), Becker Penetration Test (BPT) and Shear wave velocity tests, geotechnical engineers prefer these 

procedures to use for evaluating soil liquefaction potential. 

           A new comprehensive approach for soil liquefaction assessment which considers uncertainty, is 

statistical analysis and specially reliability analysis. Many researches in this field has been done. Juang et al. 

(2004) analysis soil liquefaction based on CPT databases. They investigated the uncertainties in the Robertson 

and Wride model by using First-Order Reliability method (FORM) [1]. They considered parameter and model 

uncertainties in their probabilistic model. Hwang et al. (2004) based on statistical analysis and Chi Chi (1999) 

earthquake data, estimated the probability density function of cyclic shear induced-earthquake. They used First-

Order Second Moment (FOSM) to obtain a correlation between probability of liquefaction (PL) and cyclic 

stress ratio (CSR) [2]. Juang et al. (2006) by using the artificial neural network, presented a new relationship 

for soil liquefaction assessment based on 200 CPT databases [3]. Lee at el. (2010) investigated liquefaction 

data from one of the cities which was seen much damage in Chi Chi (1999) earthquake, Yuanlin. They 

considered uncertainties in dynamic soil resistance parameters in their liquefaction evaluation model. To 

determine the cyclic soil shear strength, they used SPT and CPT methods and illustrated a good agreement 

between the results of both models based on two methods [4]. 

           In this paper, Gene Expression Programming (GEP) which is based on Genetic algorithm, is used to 

develop the Factor of Safety (Fs) model based on SPT databases (Cetin, 2000). In order to verify the GEP 
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model, GEP results are compared with the results of Idriss and Boulanger approach (2010) [5]. The parameter 

uncertainty of the GEP model is calculated by using the FORM reliability analysis. A hybrid of Particle Swarm 

Optimization and Genetic Algorithm (PSO-GA), which are kinds of meta-heuristic optimization algorithms, 

are used as an optimization tool for the FORM reliability analysis. Through a rigorous reliability analysis using 

FORM, reliability index (β) is determined. Then Bayesian mapping function is utilized to make a relationship 

between the liquefaction probability and reliability index. Finally, effect of the level of parameter uncertainty 

is investigated by comparing the Bayesian mapping function obtained for each uncertainty level. 
 

 

2. GEP MODEL FOR FS 

 

To decrease the time processing, all the 160 data normalized before entering to GEP. The fitness of each model 

is determined by minimizing the Mean-Squared-Error (MSE) as given in Eq.  (1). For development the Fs 

model, 110 data points are selected for training and the remaining of them as testing data. Among several 

models, the best one is chosen based on the rate of successful prediction as presented in Eq. (2). The successful 

prediction rates of liquefied and non-liquefied for the model are 80% for training and 86% for testing data. 

Statistical performance of the model is shown in Table1. Figure 1 illustrated the performance of the proposed 

Fs model in the classification concept. Figure 2 shows predicted Fs versus calculated Fs based on the Idriss and 

Boulanger (2010) approach. From the sensitivity analysis for the Fs model, N1,60 (49.82%) is the most important 

parameter and the others are respectively, CSR7.5 (43.12%), N1,60 (29.36%), Mw (20.34%) and FC (7.18%). 

 

𝑀𝑆𝐸 =
1

𝑛
[∑ (𝐿𝐼 − 𝐿𝐼𝑝)

2𝑛
𝑖=1 ]                                                                                                                   (1) 

 (2) 

𝐹𝑆 = {
1

7.096191 × 𝐶𝑆𝑅7.5 × (2𝐶𝑆𝑅7.5 + 𝑀𝑤) × [(𝑁1)60 + 𝐶𝑆𝑅7.5]
× √𝑀𝑤

4 × 0.00166134}

+ [(𝑁1)60 × 9.708588 + 29.22056836] ×
1

94.256681 × 𝐶𝑆𝑅7.5

×
(𝑁1)60

94.256681

× √9.708588 + sin {[(𝑁1)60 − (𝐶𝑆𝑅7.5 × 𝐹𝐶 × 𝑀𝑤
2)]

18
} 

 

 

Table1- Statistical performance of the Fs model 

Model 
R2       

(Train) 

R2 

(Test) 

MSE 

(Train) 

MSE 

(Test) 

RMSE 

(Train) 

RMSE 

(Test) 

Fs 0.9952 0.9348 5E-05 7.2E-05 0.007 0.0084 

 

 
 

Figure 1. Performance of proposed Fs model based on classification concept 
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Figure 2. Comparison of the predicted model with calculated Fs based on                                                                   

the Idriss and Boulanger method (2010) 

 

 

3. RELIABILITY ANALYSIS 
 

Generally there is so much uncertainties in geotechnical engineering, specially in liquefaction analysis (e.g. 

errors due to distribution of measured data, systematic errors and human errors). So due to inability of the 

deterministic methods to taking into account errors in soil liquefaction potential analysis, they are not 

applicable to utilize. So the use of the reliability analysis is necessary[6]. 

           The first step in the reliability analysis is to define a performance function. In the liquefaction potential 

evaluation the cyclic stress ratio (CSR) and the cyclic resistance ratio (CRR) are defined by Q and R 

respectively. The margin of safety, Z is defined as the difference between the resistance and the load. So the 

performance function of liquefaction potential assessment is presented by Eq. (3). 

 

𝑍 = 𝑅 − 𝑄                                                                                                                               (3) 

 

           If Z<0, it indicates the failure mode and the occurrence of liquefaction. The dark area of the probability 

density function (PDF) of Z as shown in Figure 3 depicts the probability of liquefaction (PL). 

 

 
Figure 3. Probability density function of liquefaction performance function                                                    

(modified from Baecher and Christian 2003) 
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           Due to some uncertainties in CRR and CSR, R and Q are treated as random variables and the reliability 

index (β) is defined as the inverse of the standard deviation as given in Eq. (4). 
 

                     

β =
μz

σz
=

μR-μQ

√σR
2 +σQ

2 -2ρRQσRσQ

                                                                                                         (4) 

 

where μR, μQ are respectively the mean values of R and Q and σR, σQ are respectively the standard deviations of 

R and Q, σ2
R, σ2

Q are respectively the variances of R and Q and ρRQ is the correlation coefficient between R and 

Q. 

           If R and Q are random variables with normal distribution, then the performance function is also normally 

distributed. The probability of liquefaction (PL) can be obtained through the notional failure probability 

concept, presented as Eq. (5). 

 

𝑝f = 𝑃𝐿 = 𝑃[Z ≤ 0] == Φ (−
μz

σz
) = Φ(β) = 1 − Φ(β)                                                                   (5)      

 

where Φ is the cumulative distribution function (CDF) for a standard normal variable. 

           Despite this method simplicity, it has significant drawbacks. For example when the failure function 

linearized around the average values of the random variables, this method estimate the different reliability 

index (β) by choosing the different functions for the same problem. For solving this problem, Hasofer and Lind 

(2000) defined a geometric interpretation of the reliability index (β), which is defined as the shortest distance 

between the limit state function and the origin in the standard variable space and they suggested to use a linear 

approximation of the failure surface at the design point.  

           Based on the Hasofer-Lind approach all the normal variables are transformed to their reduced form in 

standard normal space with zero mean and unit standard deviation. So R and Q can be shown as Eq. (6)-(7) as 

standard normal variables. The distance between the origin and the limit state line is presented as Eq. (8). 

        

𝑅′ =
R−μR

σR
                                                                                                                                                            (6)                                                                                                                                               

 

Q' =
Q-μQ

σQ
                                                                                                                                     (7) 

                                                                                           

𝑑 =
𝜇𝑅−𝜇𝑄

𝜎𝑅
2+𝜎𝑄

2                                                                                                                                                              (8) 

 

 

           Liquefaction performance function, Z depends on multiple variables such as N1,60, FC, σv, σv´, amax, Mw. 

So the Eq. (3) can be presented as Eq. (9). 

 

Z= R – Q =g(z)                                                                                                                                                   (9) 
 

where z is a vector of uncorrelated random variables z={N1,60, FC, σv, σv´, amax, Mw}. 

           Eq. (8) can be extended for six random variables, which are first converted to standard normal variables 

(zi´) as obtained in Eq. (10). So the reliability index (β) based on First-Order reliability method can be calculated 

by Eq. (11), which g(z)=0 is a constraint function. 

 

𝑑 = √𝑧1
′2

+ 𝑧2
′2

+ ⋯ + 𝑧6
′2

= √𝑧′𝑇
𝑧′                                                                                              (10)        

           

𝛽 = 𝑚𝑖𝑛(𝑧′𝑇
𝑧′)

2
       𝑔(𝑧) = 0                                                                                                                          (11)  

 

           Because of the lognormal distribution good fitting to the many geotechnical parameters, In this paper, 

each variable is assumed to follow lognormal distribution and the mean and standard deviation of equivalent 

normal variables can be calculated respectively by Eq. (12)-(13) [7]. 

 

ξi = √ln (1 + δzi
2 )                                                                                                                                             (12) 
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      λi = lnμzi − 0.5ξi
2                                                                                                                  (13) 

 

where ξi is the standard deviation of the equivalent normal variable, λi is the mean of the equivalent normal 

variable, μzi is the mean of the random variable zi and δzi is the coefficient of variation of zi.  

           Several numerical techniques can be used to minimize the reliability index (β). One of the new 

optimization methods is a hybrid of Particle Swarm Optimization and Genetic Algorithm (PSO-GA). This 

algorithm is depends only on the quality of the response variables, while most optimization methods need 

knowledge of derivatives of the objective function, which may not be easy to obtain derivatives in different 

optimization problems such as reliability problems. The benefits of using this approach is its easy mechanism 

to use by computer and in this study, simulation is performed by MATLAB2013a software. 

 

 

4. PARAMETER UNCERTAINTY 
 

The coefficients of correlation among six input variables are given in Table 2. Due to the lack of the 

consideration of the model uncertainty in the FORM analysis, the calculated β and the relating PL through the 

notional concept are underestimated or overestimated. Then, Bayesian mapping function are utilized to make 

a relationship between Fs and PL to interpret the probability of liquefaction occurrence. Figure 4 shows a 

difference between the notional concept and the Bayesian mapping function in β-PL curves. The second curve 

is calibrated empirically with the field manifestations of databases, so it can be a good approximation of the 

true probability of liquefaction [8, 9, 10, 11, 12, 13]. 

 
Table 2- Coefficients of correlation of the input variables 

Input Parameters 

Input 

Parameters wM maxa vσ v′σ FC 1,60N 

0 0 0.3 0.3 0 1 1,60N 

0 0 0 0 1 0 FC 

0 0 0.9 1 0 0.3 v′σ 

0 0 1 0.9 0 0.3 vσ 

0.9 1 0 0 0 0 maxa 

1 0.9 0 0 0 0 wM 

 

 
Figure 4. Estimated β-PL curves obtained from the reliability analysis 
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           By comparing the Bayesian mapping functions obtained for each level of uncertainty, the effect of the 

parameter uncertainty levels are investigated. Figure 5 shows the effect of five levels of uncertainty 

(COV=0.10, 0.25, 0.40, 0.55, 0.70) of the N1,60 on β-PL curves. The results show that the cases between 

COV=0.1 and COV=0.25 the level of N1,60 has a little effect on the β-PL curve and the effect of the uncertainty 

becomes significant at a greater COV values. 

 
Figure 5. Effect of COV of N1,60 on the Bayesian mapping function 

 

           Similarly, the effect of the uncertainty of FC for four different COV values (COV= 0.10, 0.75, 1.25, 

2.00) are considered and as expected from the Fs-GEP model sensitivity analysis, the FC has not a great effect 

on the Bayesian curve as illustrated in figure 6. 
 

 

 
Figure 6. Effect of COV of FC on the Bayesian mapping function 

 

           To investigate the effect of the level of uncertainty of σv´, four different scenarios of sensitivity analysis 

of COVs (0.05, 0.15, 0.25, 0.35) are performed. The results show that from COV=0.05 to 0.15 and COV=0.25-

0.35 the level of σv´ uncertainty has little effect on the β-PL relationship but a little more difference is observed 

from COV=0.15 to COV=0.25, as shown in Figure 7. 

 
Figure 7. Effect of COV of σv´ on the Bayesian mapping function 
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           Six different scenarios of sensitivity analyses for assessing the levels of uncertainty of amax and Mw are 

studied. (COV amax=0.1 & COV Mw=0.01, COV amax=0.1 & COV Mw=0.02, COV amax=0.2 & COV Mw=0.01, 

COV amax=0.2 & COV Mw=0.02, COV amax=0.3 & COV Mw=0.01, COV amax=0.3 & COV Mw=0.02). By 

changing the COV of amax, β-PL curve has seen a significant effect but the effect of Mw uncertainty is not 

remarkable as indicated by Figure 8. 

 
Figure 8. Effect of COVs of amax and Mw on the Bayesian mapping function 

 

 

5.       CONCLUSIONS 
In this paper, Gene Expression Programming (GEP) has been used as a tool to develop the factor of safety (Fs) 

model. The efficiency of the GEP model is indicated by comparing the results of the GEP model with the 

results calculated based on Idriss and Boulanger approach (2010). Fs model is utilized to form the constrained 

function. 

           First-Order Reliability Method (FORM) requires an optimization algorithm to locate the design point 

and to determine the reliability index (β). For this purpose, in this paper a hybrid of Particle Swarm 

Optimization and Genetic Algorithm (PSO-GA) in MATLAB2013a is utilized to minimize the objective 

function, then the notional probability of liquefaction (PL) can be obtained through the FORM analysis. Also 

the Bayesian mapping function on the basis of Bayesian theory of conditional probability is used to establish 

a relationship between β and PL to interpret the probability of liquefaction occurrence. It can be found that, 

due to lack of consideration of model uncertainty, calculated β values are not accurate and thus, the notional 

probability curve is not exactly correct. It can also be observed from the Bayesian mapping function that, where 

the β is equal to 0, PL is equal to 0.5586, which is approximately near to PL=0.5. The results indicate the 

robustness of this method. So Bayesian mapping function can be used for primary estimation of PL of the 

databases in the absence of the parameter uncertainty. Finally, effect of the level of parameter uncertainty 

(levels of N1,60, FC, σv´, amax and Mw uncertainty) is investigated. According to the β-PL curves, can be 

concluded that, where the current parameter uncertainty differs remarkably from those assumed in the base 

analysis, the β-PL mapping function are not applicable to use. 

 

 

6. REFERENCES 
 

1. Juang, C. Hsein, et al. "Characterization of the uncertainty of the Robertson and Wride model for 

liquefaction potential evaluation." Soil Dynamics and Earthquake Engineering 24.9 (2004): 771-780. 

2. Hwang, Jin-Hung, Chin-Wen Yang, and D. S. Juang. "A practical reliability-based method for assessing 

soil liquefaction potential." Soil Dynamics and Earthquake Engineering 24.9 (2004): 761-770. 

3. Juang, C. Hsein, et al. "New models for probability of liquefaction using standard penetration tests based 

on an updated database of case histories."Engineering Geology 133 (2012): 85-93. 

4. Lee, Ya-Fen, et al. "Annual probability and return period of soil liquefaction in Yuanlin, Taiwan attributed 

to Chelungpu Fault and Changhua Fault."Engineering Geology 114.3 (2010): 343-353. 

5. Idriss, I. M., and R. W. Boulanger. "SPT-based liquefaction triggering procedures." Rep. UCD/CGM-10 2 

(2010). 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability Index, 
1

P
ro

b
ab

il
it

y
 o

f 
li

q
u

ef
ac

ti
o

n
, 

P L

 

 

COV a
max

=0.1

COV M
w

=0.01

COV a
max

=0.1

COV M
w

=0.02

COV a
max

=0.2

COV M
w

=0.01

COV a
max

=0.2

COV M
w

=0.02

COV a
max

=0.3

COV M
w

=0.01

COV a
max

=0.3

COV M
w

=0.02

Archive of SID

www.SID.ir

http://www.sid.ir


11 May 2016-National Congress on Civil Engineering, 10 th9                             

                         Ferdowsi University of Mashhad, Mashhad, Iran 

 

 

 

 

 8 

6. Juang, C. Hsein, Sunny Ye Fang, and Eng Hui Khor. "First-order reliability method for probabilistic 

liquefaction triggering analysis using CPT." Journal of Geotechnical and Geoenvironmental 

Engineering (2006). 

7. Jefferies, M. G., and W. H. Wright. "Dynamic response of Molikpaq to ice-structure 

interaction." Proceedings of the Conference on Offshore Mechanics and Arctic Engineering. 1988. 

8. Juang, C. Hsein, Susan Hui Yang, and Haiming Yuan. "Model uncertainty of shear wave velocity-based 

method for liquefaction potential evaluation."Journal of geotechnical and geoenvironmental 

engineering 131.10 (2005): 1274-1282. 

9. Haldar, Achintya, and Wilson H. Tang. "Probabilistic evaluation of liquefaction potential." Journal of the 

Geotechnical Engineering Division 105.2 (1979): 145-163. 

10. Juang, C. Hsein, David V. Rosowsky, and Wilson H. Tang. "Reliability-based method for assessing    

liquefaction potential of soils." Journal of Geotechnical and Geoenvironmental Engineering 125.8 (1999): 

684-689. 

11. D. S. Juang ,Hwang, Jin-Hung and Chin-Wen Yang. "A practical reliability-based method for assessing 

soil liquefaction potential." Soil Dynamics and Earthquake Engineering 24.9 (2004): 761-770.Atluri, S.N. 

and Shen, S. (2013),“The  Meshless Local Petrov–Galerkin (MLPG) Method”, Tech Science Press, USA. 

12. Juang, C. Hsein, Sunny Ye Fang, and Eng Hui Khor. "First-order reliability method for probabilistic 

liquefaction triggering analysis using CPT." Journal of Geotechnical and Geoenvironmental 

Engineering (2006). 

13. Phoon, Kok-Kwang, ed. Reliability-based design in geotechnical engineering: computations and 

applications. CRC Press, 2008. 

 

Archive of SID

www.SID.ir

http://www.sid.ir

