

Parallelization of a Color DCT Watermarking

Algorithm using a CUDA-based Approach

Alireza Ahmadi Mohammadabadi

Department of Computer Engineering

Razi University

Kermanshah, Iran

alireza.ahmadi.computer@gmail.com

Abdolah Chalechale

Department of Computer Engineering

Razi University

Kermanshah, Iran

chalechale@razi.ac.ir

Abstract— Image watermarking in DCT domain has a high

computational complexity especially for color and high resolution

images, where usage of them has been significantly grown. To

address this issue, in this article, a data-parallel color DCT

watermarking approach is proposed and implemented on GPU

using CUDA. Also, in this work, before embedding, the color

watermark is compressed using a modified method to get less

distortion. CUDA implementation of 8×8 DCT offers 12x-43x

speedup with GT 540M and 94x-105x speedup with GTX 580, for

different image sizes. In case of embedding procedure, the

speedup obtained by GT 540M is between 7x and 26x, and the

speedup obtained by GTX 580 is between 46x and 73x, for

various case studies. Furthermore, in case of extracting

procedure, GT 540M leads to a speedup between 10x and 29x,

and GTX 580 leads to a speedup between 75x and 80x, for

various case studies.

Keywords—Color images; CUDA; DCT; GPU; Parallel

programming; Watermarking;

I. INTRODUCTION

Image watermarking is an efficient solution for
authentication and copyright protection of images in popular
communication environments like Internet which is
susceptible to illegal usages [1]. The basic procedure of image
watermarking is to hide some secret data as watermark into a
cover image as host, verifying ownership of the image by
detecting the watermark. The watermark can be inserted into
spatial domain of the host image by changing the gray-levels
of some pixels. However the spatial domain algorithms suffer
from vulnerability against signal processing attacks such as
JPEG compression or filtering.

In the last decades, most of the reported watermarking
methods are concentrated in the embedding in transform
domain, such as Discrete Cosine Transform (DCT), Discrete
Fourier Transform (DFT), Discrete Wavelet Transform
(DWT) and so on [1-4]. The DCT is used most widely for
transforming the multimedia data to the frequency domain in
most of the compression standards such as JPEG, MPEG,
JVT, ITU’s H.261 and H.263, etc [3]. As the conclusion,
frequency domain especially DCT is more popular, efficient
and applied in the watermarking algorithm. In the same time,
DCT watermarking has more time complexity rather than
spatial domain.

978-1-5090-3586-1/16/$31.00 ©2016 IEEE

On the other hand, with ever-increasing use of color

images, color image watermarking has become more

important, so that, in recent years, color image watermarking

has been becoming one of the hot research topics [2, 4-5].

Compared with gray-level image, the color one takes

advantages of higher capacity and fidelity, which is because

the color perception depends not only on the luminance but

also on the chrominance. However, due to color space

transforms and further processing requirement, the color

watermarking leads to further increase the time complexity.

Therefore, it is required to use newer methods as well as

platforms with higher computing power to cope with these

time consuming applications. In recent years, due to power

and technology restrictions, the role of parallelism as well as

multi- and many-core processors for higher performance and

speedup in various programs has become more and more

important.

Graphics Processing Unit (GPU) as a highly parallel,

multithreaded and many-core architecture can be applied by

user for computationally intensive processes. To address the

issue, NVIDIA Corporation introduced Compute Unified

Device Architecture (CUDA) as a general purpose parallel

computing architecture with a new parallel programming

model and instruction set architecture [6]. In fact CUDA is an

extended model of standard C language for parallel computing

that allows the user to program own algorithms on GPU

easily. Comprehensive information about parallel

programming with CUDA can be found in [6], [7].

Our group has already presented parallelized and CUDA-

based computations for image retrieval algorithms. In our

approaches, CUDA threads efficiently mapped on different

image blocks to extract the features based on color [8], texture

[9], edge histogram [10] and so on [11]. Furthermore, in [12],

GPU is used to accelerate a DCT-based steganography

algorithm using an OpenCL implementation.

In this work, we select a color DCT watermarking

algorithm proposed by Su et al. [4] to parallelize and

efficiently implement on GPU using CUDA. Su’s algorithm is

one of most recent watermarking researches in the DCT

domain that outperforms earlier color watermarking schemes

in terms of robustness and invisibility. However, the algorithm

has high computational complexity due to its time consuming

steps such as color space transforming for host image, one-

Archive of SID

www.SID.ir

http://www.sid.ir

level DCT performing in 8×8 blocks for both host and

watermark images, and two-level DCT performing in 4×4

blocks.

This paper unfolds as follows. GPU architecture and

CUDA programming model are briefly described in Section II.

Our parallelization strategies and modifications on Su’s

algorithm [4] are presented in Section III. Section IV brings

experimental results and speedups obtained by our CUDA

implementation. Concluding remarks are drawn in Section V.

II. NVIDIA GPU ARCHITECTURE AND CUDA PLATFORME

The GPU has a set of multiprocessor cores and each

multiprocessor containing several scalar processors is capable

of executing a very high number of threads concurrently. So

each multiprocessor has Single Instruction, Multiple Threads

(SIMT) architecture, and consequently a large number of

threads run the same instruction, operating on different data

elements in parallel. Which means Single Instruction, Multiple

Data (SIMD) programming model can be realized by CUDA

to implement the massive data-parallel programs on GPU. In

fact for parallel processing of large data sets in CUDA

architecture, many threads run concurrently and each thread

processes a portion of the data.
The GPU has three different memory types: global

memory, constant memory, and texture memory. Since a lot of
concurrent threads have to read from and write to the memory
at the same time, the GPU memory bandwidth is much higher
than CPU. Global memory is slowest memory type and is used
to data communication between host (CPU) and device
(GPU).

In a CUDA program, a function that must be executed on
GPU is called kernel. The same process on N different data
elements is written in forms of a kernel to execute by N
threads in parallel. The kernel is invoked by the host to run on
the device. Programmer determines the number of threads by
setting the number of threads per thread block and the number
of blocks per grid. All threads within a block can cooperate
among themselves by sharing data through some shared
memory and synchronizing their execution to coordinate
memory accesses. Each thread block is executed by only one
multiprocessor, though the multiprocessor may be applied to
execute one or several blocks. The dimensions of the grid and
the thread blocks as well as the number of the elements in
each dimension must be determined so to map to the data
which should be processed by the GPU, achieving a high
performance. However, constraints of the GPU model in terms
of maximum the number of threads in each block and the
number of processors in the system are limiting factors.

The multiprocessor partitions its thread blocks into

groups of 32 parallel threads called warps. The threads

composing a warp, have a property that should be considered

in CUDA programming. When diverging a thread caused by

data-dependent conditional branch, the warp including the

thread executes each branch path serially. Consequently, the

threads that are not on that path, are disabled. However, after

completing paths, the threads converge back to the same

execution path [6]. So in writing kernel code, data-dependent

conditional branch should be avoided as possible to get more

performance.

III. THE PROPOSED CUDA-BASED APPROACH

To efficiently utilize many-core architecture of the GPU
for the data-independent image processing applications, it is
necessary that an appropriate organization of CUDA threads is
taken, and input data is correctly mapped on the threads, so
that a higher pixel-level parallelism is achieved. In fact, how
to organize CUDA blocks and threads as well as map data on
them has a great impact on overall performance. In this
research, it is attempted that CUDA blocks and threads is
matched with different parts of the image as possible. It is
notable that the Su’s watermarking algorithm [4] is slightly
modified in order to get lower complexity and higher quality.
In the following, the proposed parallelization strategies are
separately described for DCT, color space transform and
different steps of the watermarking algorithm.

A. DCT

DCT can be accounted as a core for the studied
watermarking algorithm and can be a bottle neck. So, it is
necessary that an efficient data parallel approach is utilized to
implement DCT operation on GPU. To perform 2D-DCT on
an image, the image is partitioned into 8×8 non-overlapping
blocks and each of them is transferred by DCT operator as
expressed by the following equation [4].

1

0

1

0

)
2

)12(
cos()

2

)12(
cos(),()()(),(

N

x

N

y N

vy

N

ux
yxfvuvuC

 (1)

0,/2

0,/1
)(

uN

uN
u

Here, f(x,y) and C(u,v) are input and output matrices ,
respectively. Also, below equation depicts N×N 2D IDCT.

1

0

1

0

)
2

)12(
cos()

2

)12(
cos(),()()(),(

N

u

N

v N

vy

N

ux
vuCvuyxf

 (2)

To efficient map input data on CUDA threads, dimensions
of each CUDA block is set to 8×8. Also, dimensions of the
grid are exactly determined based on number of 8×8 blocks in
the image. For example, if size of input image is 256×512,
then number of 8×8 independent blocks which are used for
DCT operation is 32×64. Thus, size of the grid is set to 32×64,
and size of the CUDA block is set to 8×8. Consequently, one
thread is considered for each pixel, so that the thread can
compute one output DCT coefficient. In this case, coordinate
of the output DCT coefficient is exactly equal to thread
coordinate and so mapping procedure is easy. If the coordinate
of the output DCT coefficient is (u,v), then the coordinate is
calculated as follows.

ythreadIdx.8blockIdx.y

xthreadIdx.8blockIdx.x

v

u (3)

Using this approach, computational complexity of 2D-
DCT is reduced from O(N

4
) to O(N

2
). However, generally, for

the threads considered for an ordinary image, there is not a
sufficient number of cores available on the current GPUs.
Also, the operating frequency of the GPU cores is generally

Archive of SID

www.SID.ir

http://www.sid.ir

lower than CPU. Furthermore, the data communication
overhead reduces the GPU performance. Nevertheless, it is
expected the GPU implementation offers a significant speedup
due to the data-parallel nature of DCT application and its
efficient mapping on CUDA threads.

In case of 4×4 2D-DCT, since a 4×4 region in the upper-
left corner of 8×8 blocks is processed, size of gird is
determined similar to 8×8 2D-DCT; however size of block is
set to 4×4. Also, the coordinate of the DCT coefficient
corresponding to the thread is obtained by equation 3. But,
only the pixels placed in the 4×4 region are processed.

B. Color Space Transform

In the studied color image watermarking algorithm, the

host image must be transformed from RGB color space to YIQ

color space and vice versa. Transforming equations can be

written as [4]:

B 0.312G) -0.523(R 0.211 Q

B) -0.322(G) -0.275(R 0.596 I

B 0.114G 0.587R 0.299

Y
 (4)

 (-1.703Q) I) -1.106(Y 1.000 B

Q) -0.647(I) -0.272(Y 1.000 G

Q 0.621I 0.956Y 000.1

R
 (5)

For color space transform, each pixel in each output color
component is a function of corresponding three pixels in input
color components. So, if size of the input image is M×N×3,
then values of M×N×3 pixels should be computed for the
output image, in which computation of each output pixel is
independent of others. Consequently, it is suggested that
M×N×3 threads are considered for calculation of M×N×3
output pixels, in which each thread is responsible for one
output pixel. Note that the total number of threads must be
M×N×3; however different thread organizations may be used.
But, it is more efficient that the thread organization to be
matched on size of the problem. Therefore, size of the grid is
considered as 1×3, and size of each block is considered as
M×N. Consequently, each output color component is obtained
by the threads of one CUDA block. The output pixels from the
three color components are obtained by three different
equations. But, all threads of the grid execute the same
instructions. To solve this problem, according to the index of
related CUDA block (blockIdx), the appropriate equation is
selected. Therefore, all of threads within one CUDA block
execute the same code and consequently there is no warp that
its threads diverged from each other, showing superiority of
proposed CUDA threads organization.

C. Embedding Procedure

 Here, the proposed parallel implementation of the

embedding procedure on GPU is explained step by step by

means of the following pseudo code.

 1- Host image is transferred from the main memory (CPU

side) to the GPU memory. Then, the kernel explained in

previous sub-section is invoked to transform the host

image from RGB color space to YIQ color space.

2- The DCT kernel is invoked to perform 8×8 2D-DCT on

component Y.

3- The DCT kernel with a new thread organization is

again invoked to perform 4×4 2D-DCT, getting two-

level DCT transferred coefficients of component Y.

4- Similar to the host image, one-level DCT is performed

on the watermark image using CUDA parallel threads.

5- DCT transformed watermark image is compressed by a

new kernel. Our compressing method is slightly

different from one used in [4]. In Su’s method [4],

according to Zig-Zag order, the six coefficients (the DC

coefficient and the first five AC ones) are selected and

other coefficients are discarded. In the remaining

coefficients, the first two are encoded with 16 bit

binary, and the others are encoded with 8 bit binary,

respectively. So, 64 bits are required to encode an 8×8

block in DCT domain. By DCT performing on 8×8

blocks of standard images used in most image

processing algorithms, it can be found that the absolute

value of DC coefficient has generally the greatest value

among coefficients, the first two AC coefficients are

generally have smaller values with approximately

similar range, and other three AC coefficients have

generally much smaller values. So, it is proposed to

consider 14 bits for DC coefficient, 11 bits for the first

two AC coefficients and 9 bits for the next three AC

coefficients in Zig-Zag order. Thus, using this method,

63 bits are required to encode an 8×8 block in DCT

domain. Also, experimental result shows that the

proposed compress coding offers a higher PSNR than

Su’s compress coding (refer to Section IV).

After compressing procedure, a sequence of watermark

bits is generated (64 bits per 8×8 block of the host

watermark). In our GPU implementation, number of all

threads is equal to number of 8×8 blocks of the DCT

coefficients matrix and consequently each thread is

responsible for generating watermark bits from one 8×8

block. The generated sequence is transmitted to the

Main memory.

6- In the CPU side, the sequence of watermark bits is

copied three times into a larger sequence. So, a

sequence containing three similar sets of watermark bits

which must be transferred to the GPU memory. Then, a

kernel is invoked to embedding watermarks bits. In [4],

it is described that 9 DCT coefficients of each 8×8

block are selected for embedding watermark

information (refer to [4] for more information about

embedding and extracting formula). So, for the GPU

Archive of SID

www.SID.ir

http://www.sid.ir

implementation, size of the grid will be equal to number

of 8×8 blocks. Also, for each CUDA block, 9 threads

are considered to embed a watermark bit from the

sequence.

7- Parallel execution of 4×4 inverse 2D-DCT on resultant

of the previous step should be performed using GPU

cores, similar to step 3.

8- Also, 8×8 inverse 2D-DCT is performed.

9- Finally, the watermarked component Y along with

component I and Q must be transformed to RGB color

space, achieving the watermarked color image. The

GPU implementation of this step is similar to step 1.

The watermarked color image is written back to the

main memory of CPU.

Thus, the proposed GPU implementation of the embedding
algorithm has 9 kernels with various thread organizations, so
that these kernels must be invoked by the CPU in serially.

D. Extracting Procedure

Following pseudo code depicts the proposed GPU

implementation of extracting procedure. The strategies applied

to most of steps have been explained in previous sub-section.

Therefore, extra descriptions about the GPU implementation

are prevented.

1- The watermarked image is transferred from the main

memory to the GPU memory to transform from RGB

color space to YIQ color space.

2- 8×8 2D-DCT is performed.

3- Also, for the two-level-DCT, 4×4 2D-DCT is

performed.

4- Similar to the embedding kernel, size of the grid is

equal to number of 8×8 blocks. Also, there are 9

threads per CUDA block to extract watermark bits.

Generated watermark bits sequence is transferred to the

main memory.

5- The sequence containing three sets of the watermark

bits is split into three other sequences which must be

transferred to the GPU memory. A kernel is invoked to

recognize final sequence, based on majority principles.

The total number of threads for this kernel is equal to

number of watermark bits. Therefore, each thread

yields one watermark bit as output, using three input

bits.

6- In this step, a kernel should be invoked to reconstruct

de-compressed matrix using the sequence. This matrix

should be containing 8×8 blocks, so that each block is

reconstructed using 64 bits taken from the sequence.

So, number of all threads is equal to number of 8×8

blocks of the watermark image, so that each thread is

responsible for reconstructing one 8×8 block, as

previously described.

7- Finally, inverse 2D-DCT is performed on 8×8 blocks,

to get extracted watermark image.

Thus, the proposed GPU implementation of the extracting
procedure has 7 kernels with various thread organizations, so
that these kernels must be invoked by the CPU in serially. In
both procedures, it is attempted to get higher thread-level
parallelism, efficient utilizing the GPU cores and achieving
higher performance.

IV. EXPERIMENTAL RESULTS

CUDA 6.5 was used to implement the presented data-

parallel watermarking algorithm on the GPU. NVIDIA’s

Geforce GT 540M (1GB global memory and 64 cores with

frequency of 1.3 GHz) and Geforce GTX 580 (2GB global

memory and 512 cores with frequency of 1.4 GHz) were used

as two GPUs with different number of cores. To compare

performance of the parallel implementation with serial

implementation on a General Purpose Processor (GPP), the

watermarking algorithm was coded by using single thread C

language and implemented on a PC with CPU Intel Pentium 4

running at 3.1 GHz.

In order to evaluate performance of the modified

compressing method, the benchmark images depicted by Fig.1

were compressed by Su’s method [4] and the proposed method

described in the previous Section. Table I shows PSNR values

for the benchmark images. PSNR is used to evaluate

perceptual distortion of the compressing methods. It is

observed that, the proposed method improves the PSNR value

up to 21.99%, compared to Su’s method [4], for the 5

benchmark images. Fig. 2 shows Lena as host, and Peugeot

logo as watermark after the code compressing procedure. As

can be seen, the logo due to its lower quality is more affected

by both compression methods. However, the proposed method

has reduced this distortion significantly.

To analysis the efficiency of the presented parallel

approach, 8×8 2D-DCT was performed on different image

sizes varying between 64×64 and 2048×2048 using the CPU

and the two model GPUs, in which the results have been listed

in Table II. It is notable that for more accurate calculation of

the execution time, each work load is performed with 2000

iterations and the average time is considered as result.

Fig. 3 illustrates the achieved speedup by the GPUs for

different image sizes. It can be seen, by the parallel

implementation on GPU, up to 43x speedup for GT 540M as

well as up to 105x speedup for GTX 580 are achieved, for

different image sizes. The interesting note is significant

reduction in speedup obtained by GT 540M, when the image

size increases from 256×256 to 512×512. Even more

interesting, there is not this speedup degradation for GTX 580.

This is due to the fact that number of cores in GT 540M is

only 64 and consequently, for high resolution images,

inevitably, many of GPU threads are serially executed,

reducing the performance.

Archive of SID

www.SID.ir

http://www.sid.ir

 Baboon Peppers

 Lena F16 Peugeot logo

Fig.1. Benchmark images used in this work

 dfdfdfsdf

 Su’s method [4] our modified method

Fig.2. Compressed images using two methods

TABLE I. PERFORMANCE EVALUATION OF THE TWO IMAGE

COMPRESSION METHODS USING PSNR

Image Size

PSNR (db)

Su‘s

method [4]

Proposed

method

Improvement

percent

Logo

64×64×3 60.2487 64.3611 6.82%

F16

256×256×3 62.4902 69.6833 11.51%

Lena

512×512×3 60.1162 76.9536 28.01%

Peppers

512×512×3 60.1177 73.3373 21.99%

Baboon

512×512×3 61.0714 65.5031 7.26%

 TABLE II. EXECUTION TIME (SECOND) OF 8×8 DCT OPERATION

Image size
Platform

CPU
GPU GTX

540M

GPU GTX

580

64×64 0.025059 0.000587 0.000239

128×128 0.101197 0.002338 0.000956

256×256 0.34125 0.00780 0.00332

512×512 1.32481 0.10427 0.01317

1024×1024 5.17327 0.42391 0.05156

2048×2048 20.67854 1.67512 0.21956

Fig. 3. Speedup of GPUs over the CPU, for 8×8 DCT operation

To evaluate the proposed parallelization method, various

case studies with different image resolutions images (for host

and watermark) are considered which are listed in Table III.
Table IV exhibits the execution time of the embedding

procedure for the case studies on different target platforms.
Furthermore, Fig. 4 displays the speedup obtained by the
utilized GPUs. The achieved speedup for GT 540M is between
almost 7x and 26x for various case studies. Moreover, the
more power full GPU, (i.e. GTX 580) lead to a speedup
between 46x and 73x.

Also, in case of the extracting procedure, Table V lists the
execution times for the various case studies. Meanwhile,
attained speedups are illustrated in Fig. 5. GT 540M offers a
speedup between 10x and 29x, and GTX 580 offers a speedup
between 75x and 80x, for the various case studies. It can be
observed, the speedup is reduced when higher resolution
images.

V. CONCLUSION AND FUTURE WORK

For different steps of the color DCT watermarking
algorithm proposed by Su et al. [4], different parallelization
approaches and efficient CUDA thread organizations were
designed in this work. Furthermore, the compression method
for color watermarks was modified, so that the PSNR values
are improved up to 21.99%.

Implementing the proposed parallel approach on GPU GT
540M with 64 cores can reach up to 43x, 26x and 29x
speedups, and GTX 580 with 512 cores can reach up to 105x,
73x and 80x speedups, for 8×8 DCT operation, embedding
and extracting procedures, respectively. Data independent and
the parallel pixel nature of the DCT operation and most steps
of the watermarking algorithm leads to efficient utilize the
many core architecture of the GPU, getting a significant
speedup.

As future work, we investigate to design new hardware
and parallel architectures for the DCT core and the
watermarking algorithm. Also, with implementing the
customize architectures on FPGA; we can compare
performance of FPGA and GPU, as accelerator platforms.

Archive of SID

www.SID.ir

http://www.sid.ir

Table III. Case studies used for the watermarking algorithm

Case study

number
Host image resolution

Watermark image

resolution

1 128×128 16×16

2 256×256 32×32

3 512×512 64×64

4 1024×1024 128×128

5 2048×2048 256×256

TABLE IV. EXECUTION TIME (SECOND) OF THE EMBEDDING PROCEDURE

Case study

number

Platform

CPU GPU GTX 540M GPU GTX 580

1 0.186721 0.007284 0.002538

2 0.731552 0.028884 0.009817

3 2.90308 0.0127640 0.043675

4 11.55045 1.467805 0.207061

5 45.93954 6.361712 0.997195

Fig. 4. Speedup of GPUs over the CPU, for the embedding procedure

TABLE V. EXECUTION TIME (SECOND) OF THE EXTRACTING PROCEDURE

Case study

number

Platform

CPU GPU GTX 540M GPU GTX 580

1 0.115280 0.003899 0.001429

2 0.451655 0.015567 0.005615

3 1.79234 0.062553 0.022567

4 7.13116 0.656372 0.089960

5 28.37651 2.863219 0.377547

Fig. 5. Speedup of GPUs over the CPU, for the extracting procedure

REFERENCES

[1] S. Fazli and M. Moeini, “A robust image watermarking method based on
DWT, DCT, and SVD using a new technique for correction of main
geometric attacks,” Optik - International Journal for Light and Electron
Optics, vol. 127, no. 2, January 2016, pp. 964–972.

[2] T.K. Tsui, X.-P. Zhang and D. Androutsos, “Color image watermarking
using multidimensional fourier transforms”, IEEE Transaction on
Information Forensics and Security, vol. 3, no. 1, March 2008, pp. 16–
28.

[3] S.D. Lin and C.-F. Chen, “A robust DCT-based watermarking for
copyright protection”, IEEE Transactions on Consumer Electronics,
August 2000, vol. 46, no. 3, pp. 415-421.

[4] Q. Su, Y. Niu, X. Liu and T. Yao, “A Novel Blind Digital Watermarking
Algorithm for Embedding Color Image into Color Image”, Optik -
International Journal for Light and Electron Optics, vol. 124, no. 18,
September 2013, pp. 3254–3259.

[5] M. Barni, F. Bartolini and A. Piva, “Multichannel Watermarking of
Color Images”, IEEE Transaction on Circuits and Systems for Video
Technology, vol. 12, no. 3, March 2002, pp. 142–156.

[6] NVIDIA Corporation, NVIDIA CUDA C Programming 5.0, 2012.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[8] H. Heidari, A. Chalechale and A. Ahmadi, “Parallel implementation of
color based image retrieval using CUDA on the GPU”, International
Journal of Information Technology and Computer Science (IJITCS), vol.
6, no. 1, December 2013, pp. 33-40.

[9] H. Heidari, A. Chalechale and A. Ahmadi, “Parallel implementation of
texture based image retrieval on The GPU”, International Journal of
Image, Graphics and Signal Processing, vol. 5, no. 9, July 2013, pp. 36-
42.

[10] A. Ahmadi, A. Chalechale and H. Heidari, “Parallelized computation for
Edge Histogram Descriptor using CUDA on the Graphics Processing
Units (GPU)”, 17th CSI International Symposium on Computer
Architecture and Digital Systems (CADS 2013), Tehran, 2013, pp. 9-14.

[11] A. Ahmadi, A. Chalechale and H. Heidari, “GPU implementation of
edge histogram descriptor and color moments fused features for efficient
image retrieval”, The CSI Journal on Computer Science and
Engineering, vol. 9, no. 2, 2013, pp. 22-33.

[12] A. Poljicak, G. Botella, C. Garcia, L. Kedmenec, M. Prieto-Matias,
“Portable real-time DCT-based steganography using OpenCL”, Journal
of Real-Time Image Processing, special issue, July 2016, pp. 1-13.

Archive of SID

www.SID.ir

http://www.sid.ir

