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Abstract
In this paper, free vibration analysis of a stepped
Timoshenko shaft with negligible damping is
investigated by means of the finite element method in
both uniform and non-uniform status. Non-uniformity
is assumed to be in cross sectional area of the shaft
where the middle part of the stepped shaft is in
conical form. The Timoshenko beam element with
linear shape functions was used for the finite element
modeling of the shaft. Assembling of mass and
stiffness matrices, equation of motion derivation and
eigenvalue solution were performed by use of
MATLAB software. Natural frequencies of the shaft
were calculated and their corresponding mode shapes
were plotted for two boundary conditions namely
clamped and simply supported. The difference
between natural frequencies obtained from the
Timoshenko model were compared with those from
classical Bernoulli-Euler theory and the effects of
rotary inertia and shear deformation on the
magnitudes of calculated natural frequencies were
studied. It has been observed that uniform stepped
shafts are stiffer than non-uniform stepped ones for
equal amount of mass, since their frequency
parameter is higher. Additionally, it became evident
that the effects of transverse shear and rotary inertia
will be much more pronounced as the mode number
increases.
Keywords: Timoshenko-FEM-Classic Beam Theory-
Stepped Shaft.

Introduction
It is for decades that the finite element method has
been used in many engineering areas such as civil,
mechanical and aerospace. With the advent of digital
computers it has got an immense amount of interest
since the capability of computers to perform huge
amount of processes in a fraction of second made
them very suitable for such a method to stabilize its
base on an imperturbable firm. Some researchers used
analytical methods to solve the problems but as these
methods are limited to simple geometry and other
simplifications in the main physical problem, they
have been forced to use different numerical and
approximate methods in order to consider different
geometries in their studies.

Vibration analysis of beams and shafts with
different characteristics and different geometries is a
topic of engineering analysis particularly aerospace
engineering for a long time [1]. Vibration and

dynamic analysis of ribs and spars and other types of
beam-like structures, is always a challenging area in
aerospace structures like aircrafts and spacecrafts.

From the most substantial theories of Bernoulli,
Euler, Timoshenko and other great scientists of their
time to the most challenging and new theories for
analysis of nano-beams and micro-cantilevers used in
MEMS and NEMS in these days, it can be implied the
importance and huge amount of studies conducted on
this topic. Thanks to the theory formulated by
Timoshenko we can account for the effects of rotary
inertia and shear deformation in vibration of thick
beams. Since the classical Bernoulli-Euler theory
assumes the shear rigidity of the beam to be infinite it
is useful for slender beams vibrating in just their first
natural frequencies.

In [3] Sarigul and Aksu studied the free
vibration of stepped Timoshenko shafts and beams
using finite difference method and compare their
results with those from Bernoulli-Euler theory. Non-
linear free vibrations of stepped thickness beams were
studied by Sato in [9] where he accounts for the
effects of nonlinearity in his study. A piecewise
continuous Timoshenko beam model for the dynamic
analysis of tapered beam-like structures was proposed
by Shen et al in [11]. In [14] Rao et al provided a
finite element formulation for large amplitude free
vibrations of beams and orthotropic circular plates.
They studied the effects of variable cross section on
the response of structures to various kinds of loading.
In [18] Lou et al applying  third order shape functions
to the nodal displacements, studied the dynamic
behavior of a uniform Timoshenko beam under
moving concentrated loads with the finite element
method.

In this article the model to describe the shaft was
based on Timoshenko theory which does account for
the effects of rotary inertia and shear deformation in
addition to the assumptions of classical Bernoulli-
Euler theory. Here, we had studied free vibration of
stepped uniform and non-uniform Timoshenko shafts
with two different boundary conditions. Utilizing
linear shape functions for the Timoshenko beam
elements we derive the element mass and stiffness
matrices. Assembling the element matrices will yield
the global mass and stiffness matrices and then the
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equation of motion. By solving the eigenvalue
problem resulted from the assumptions above, natural
frequencies will be calculated and consequently
corresponding mode shapes can be plotted for shafts
subjected to different boundary conditions.

Model of a Timoshenko Beam Element
A simply supported beam is shown in Fig. 1. A
coordinate system is assumed to be fixed in the
inertial frame, with the -axis parallel to the
undeformed longitudinal axis of the beam and the y-
axis pointing vertically downward in the same
direction as the gravitational acceleration g. It is
assumed that the downward displacement of the
Timoshenko beam is taken as positive and that it is
measured with reference to its vertical static
equilibrium position.

Fig. 1: A Simply Supported Uniform Beam

The Timoshenko beam is discretized into a
number of simple elements with equal length. Fig. 2
shows a Timoshenko beam element of length . The
beam element consists of two nodes and ; each node
has two degrees of freedom, i.e., vertical displacement

and bending rotation (or slope) . The vertical
displacement and bending rotation of an arbitrary
point on the beam element can be expressed as:

(1)
(2)

in which is the element nodal displacement

vector and the shape functions are written as :

(3)

(4)

Fig. 2: Timoshenko Element

The virtual work of a Timoshenko beam element
and the equation of motion
According to Fig. 2, the virtual work of this beam
element consists of the internal virtual work and
the external virtual work . It is assumed that the
damping effect of the beam is neglected, the internal
virtual work of this beam element can be written
as:

(5)

The external virtual work of this beam element
can be expressed as :

(6)

where is the mass density of the beam material; and
the dot above the symbol denotes the differentiation
with respect to time t. Performing the differentiation
with respect to coordinate and time t, stiffness and
mass matrices for the beam element will be derived as:

consistent mass matrix for translational inertia =

consistent mass matrix for rotatory inertia =

bending stiffness matrix =

shear stiffness matrix =

through which the equation of motion for the beam
element can be derived as

(7)

where

[

By assembling element matrices and element
nodal vectors, respectively, one can obtain the global
equation of motion for a Timoshenko beam neglecting
the damping, which will appear as

(8)

where the matrices and are the global mass
and stiffness matrices, respectively, of the
Timoshenko beam; the vectors and are the
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nodal acceleration and displacement vectors,
respectively, of the beam. Eq. (8) could successfully
analyze the free vibration response of an elastic
Timoshenko beam with various boundary conditions.

Results and Discussion
In this section, as shown by Fig. 3, two types of
stepped shafts have been considered; namely uniform
and non-uniform. In this problem, E=30*10e6 and
G=90/8*10e6 psi are used as Young’s modulus and
shear modulus. The value of shear coefficient was set
to k=0.886 as proposed by Cowper [21] for a circular
cross-section having a Poisson ratio equal to 0.3. The
material of the shaft is steel with mass density of 0.28
and length of 10 inches.

Fig. 3: Typical Timoshenko shaft

In all computations the number of elements has
been set to 120 because of good convergence and fine
running time considerations. In order to verify the
validity of the method we have performed a
comparison for the natural frequencies and mode
shapes with [3]. Results for the frequencies are
summerized in Tables 1 to 3 and for mode shapes are
shown in Figs. 4 to 7. The comparison of the natural
frequency parameters for Timoshenko and
Bernoulli-Euler shafts are summarized in Table 1.

Table 1: Timoshenko vs Bernoulli-Euler dimensionless
natural frequency parameters for uniform simply

supported stepped shaft
Mode

Number
Present
Method

Bernoulli-
Euler

Discrepancy
(%)

Omega
Ratio

1 5.4764 5.6535 3.13 0.96

2 16.7749 18.695 10.27 0.89

3 47.3561 67.8684 30.22 0.69

4 72.3755 117.1585 38.22 0.61

5 92.5306 151.0257 38.73 0.61

We can observe that the predicted natural
frequencies by Bernoulli-Euler theory are higher than
those predicted by Timoshenko theory since the
Bernoulli-Euler theory do not consider the shear
deformation and assumes that the shear rigidity is

infinite so the predicted frequencies will be slightly
higher. Another observation is that as the mode
number increases the difference between two theories
are more sensible because the effects of rotary inertia
and shear deformation are functions of the wave
number hence increasing the mode number will
increase the difference between two theories. The
comparison between the present method and the
method of Sarigul [3] has been shown in Tables 2 and
3.

Table 2: Dimensionless frequency parameters for Uniform
Timoshenko shaft with simply-supported BC

Mode
Number

Present
Method

Sarigul
Discrepancy

(%)

1 5.4764 5.6256 2.65

2 16.7749 17.5545 4.44

3 47.3561 55.8303 15.17

4 72.3755 88.4739 18.19

5 92.5306 109.4663 15.47

Table 3: Dimensionless frequency parameters for Non-
Uniform Timoshenko shaft with simply-supported BC

Mode
Number

Present
Method

Sarigul
Discrepancy

(%)

1 5.3838 5.461 1.41

2 16.4799 17.3431 4.97

3 48.8949 54.5734 10.4

4 71.8914 88.25 18.53

5 90.8724 108.3535 16.13

We can observe from the results for frequency
parameter that the method presented here estimates
natural frequencies in a reasonable way since bringing
into consideration the effects of shear deformation the
calculated natural frequencies seems to be lower
according to the fact that shear rigidity is not infinite.
The difference between results herein and the results
by Sarigul [3] are more pronounced in higher modes.

According to Tables 1 to 3 the frequency
parameters in non-uniform shafts are lower than those
in uniform shafts so we can conclude that for same
mass and geometric conditions the rigidity of uniform
shaft is higher than that of non-uniform one.

Next, you can see the corresponding mode
shapes in Figs 4 to 7. General shape of the shafts
vibrating in their associated natural frequency is
plotted versus the number of elements along the shaft
length. For the purpose of spatial limitations, just two
modes of vibration for two different boundary
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conditions namely simply supported and clamped
shafts are presented here. In these figures, the red
curves are for uniform shaft and blue ones are for non-
uniform shaft.

Fig. 4: Displacement Mode No.1 for simply supported
shaft

Fig. 5: Rotation Mode No. 1 for simply supported shaft

Fig. 6: Displacement Mode No.1 for clamped shaft

The difference between the locations of the
corners of the curves in Fig. 4 is due to the steps and
non-uniformity of the shaft. The middle part of the

shaft is tapered and the diameter of the shaft at the
first step is more than that of the shaft at the second
step so we could verify the changes at the corners of
the curves in Fig. 4.

Fig. 7: Rotation Mode No. 1 for clamped shaft

From Figs 4 to 7 we can see the difference
between the simply supported and clamped boundary
conditions in a way that for clamped boundary
condition the curves for vertical displacement at the
beginning and the end of the shaft has the zero value
for slope or rotation, while in simply supported
boundary condition there is no zero slope. This can be
seen clearly in Figs 5 and 7 where the slope at the two
ends of the shaft for clamped shaft is zero but for the
simply supported shaft it has non-zero value. Also it is
observed that the effects of non-uniformity in the
cross section of the shaft showed itself as large and
irregular amplitudes in comparison to uniform shaft.

Conclusions
One of the major contributions of the method is that
different boundary conditions can be considered in the
analysis without any difficulty in calculation of the
results. In the analysis of stepped uniform and non-
uniform shafts it has been observed that uniform
stepped shafts are stiffer than non-uniform stepped
ones for equal amount of mass, since their frequency
parameter is higher. The difference between mode
shapes of uniform and non-uniform stepped shafts are
more marked for thick shafts. The effects of transverse
shear and rotary inertia increase as the mode number
increases. In higher modes, the difference between
mode shapes of uniform and non-uniform shafts is
pronounced more and the instability in non-uniform
shaft between the two steps is somehow more
compared to the uniform shaft.
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