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Abstract
In this paper, generalized differential quadrature
method (GDQM) is employed to analyze vibration of
a rotating disks by considering effect of radial and
circumferential in-plane stresses. Natural frequencies
and vibration modes are derived numerically. First,
the versatility and accuracy of the presented solution
are tested against presented exact results. Then, effects
of the ratio of radii, rotation speed and circumferential
mode number on the natural frequencies are
investigated.
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Introduction
The determination of the dynamic response of rotating
disks, i.e., the mode shapes and natural frequencies, is
an important prerequisite in design of rotating
equipments. Rotating annular disks are widely used in
mechanical and aerospace engineering such as circular
saws, turbines, flywheels, CDs and DVDs in data
storage, and so on. Many researchers have studied the
vibration of annular plates during the long period of
time. An excellent survey of the old researches on the
free vibration analysis of annular plates has been done
by Leissa [1].

Because of created in-plane stresses, rotation of
disks has a significant effect on their natural
frequencies; The first analyses of rotating disks was
performed by Lamb and Southwell [2,3], Barasch and
Chen [4] and Simmonds [5,6] which the rotating disks
were modeled by rotating membranes. A complete
solution of the fully clamped rotating membrane was
finally presented by Eversman and Dodson [7,8].
Approximate techniques, have also been used in
particular by Mote [9] to study the free vibration
characteristics of initially stressed, fully clamped,
variable thickness disks operating in a prescribed
thermal environment. Harish [10] presented a
perturbation analysis of a rotating annulus clamped at
the hub and free at the outer edge. In addition, Irie et
al. [11] studied stress distributions and flexural
vibration of rotating annular discs with radially
varying thickness by means of a spline interpolation
technique. Using perturbation technique, Mignolet et
al. [12] derived natural frequencies and mode shapes
of a fexible rotating disk clamped at the hub and free
at the outer edge

In this paper, GDQM is applied to analyze free
vibration of annular plates. Natural frequencies and
vibration modes are obtained and compared with the

published results of other researchers. Comparison of
the present and previous results confirms the
convergence and accuracy of the proposed solution.
Effects of the ratio of radii, rotation speed and
circumferential mode number on the natural
frequencies are investigated and discussed.

Vibration analysis
As depicted in Fig. 1, a uniform disk rotating at
constant angular velocity Ω is considered. The
governing equation for free vibration has been
expressed as [11]

Fig. 1: Geometry and parameters of rotating annular plate.
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where w(r,θ,t), ρ and ν are transverse deflection, mass
per unit volume and Poisson's ratio, respectively; D is
the flexural rigidity of the plate defined as
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in which E is modulus of elasticity of material and σr
and σθ are radial and circumferential in-plane stresses
created by rotation of the disk presented as [12]
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The boundary conditions should reflect the clamp
at the hub and the free condition at the outer edge. At
the hub the displacement and slope must vanish,
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while, at the free edge, both the moment and the shear
should be set to zero. This is, at r=b,
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and at r=a [11]
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Using following dimensionless parameters:
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and applying method of separation of variables as
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the set of governing equations can be rewritten in the
following dimensionless form:
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It should be noticed that in Eq. (8), ω is circular
natural frequency of vibration and in Eq. (7).

By substituting Eq. (8) into the Eq. (6), radial
component of bending moment and effective shear
force can be written in the new following form:
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and therefore, dimensionless form of boundary
conditions can be written as
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The Differential Quadrature Method
Differential quadrature method (DQM) is based on
this idea that all derivatives of a function can be
approximated by means of the weighted linear sum of
the functions values at N pre-selected grid of discrete
points as
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where A(s) is the weighting coefficient associated
with the s-th order derivative. This matrix is given as
[13]
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Distribution of grid points plays an important role
in convergence of the solution. A well-accepted set of
the grid points is the Gauss–Lobatto–Chebyshev
points given for [0,1] as
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The differential quadrature analogue
In order to simplify in notations, weighting
coefficients matrices associated with the first four
derivative will be shown respectively as
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Using DQ rules, governing equation (9) takes the

following form:
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In equation (19), the following diagonal matrices
are defined:
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The grid points can be divided in two groups as
boundary points (b) and domain ones (d) considered
as
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The governing equation should be satisfied only
for domain points [14]. Thus
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Using Eqs (23) and (26), the following
eigenvalue problem will be achieved:
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Using Eq. (27), natural frequencies and mode
shapes can be derived. It should be mentioned that
number of grid points should be considered to satisfy
the following equation for convergence of first n
frequencies:
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Numerical results and discussion
Using GDQM, free vibration analysis of rotating disk
was proposed. In this section numerical results are
presented for various cases. In this paper for all
numerical cases, ε is considered as 0.01.

In order to check the accuracy of the presented
solution, a stationary uniform disk is considered.
Table 1, shows value of the first frequency for
k=0,1,2,3,4 (λ10- λ14). According to the results of this
table, the presented results are in excellent agreement
with the reported results by Zhou et al. [5]. Also,
corresponding modes are depicted in Fig. 2.

Table 1: Dimensionless frequency for the non-rotating
uniform disk (υ=1/3, φ=0.2).

10 11 12 13 14
Present 5.2028 4.8074 6.3601 12.3557 21.5700

Zhou et al. [5] 5.2135 4.8171 6.3431 12.395 21.233 Fig. 2: Vibration modes of non-rotating uniform annular
plate ( 10 14  ).

In order to study the effect of the rotation on the
natural frequencies, a rotating disk (ν=0.3, φ=0.25) is
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considered. Figs. 3 shows variation of λ10-λ33 versus
dimensionless rotating speed. As these figures show
all frequencies grow as value of the rotating speed
increases. It can be explained by increasing in the
stiffness of the disk. Fig. 3 also confirms that natural
frequencies increase for higher values of the
circumferential mode number

Fig. 3: Variation of λ10- λ33 versus dimensionless rotating
speed for a disk with exponential change in thickness.

In order to investigate the effect of the ratio of
radii (φ) on the natural frequencies, a rotating disk
(ν=0.3, γ=10) is considered; Fig. 4 shows variation of
λ10-λ33 versus ratio of radii. As shown in these figures,
all frequencies increase as value of ratio of radii
grows. It can be explained by decreasing in the mass
of the disk. Fig. 4 also shows that effect of the
circumferential mode number (k) on the natural
frequencies decreases at higher modes.

Fig. 4: Variation of λ10- λ33 versus ratio of radii for a disk
with parabolic change in thickness.

Conclusion
In this paper, by considering effect of radial and
circumferential in-plane stresses, free vibration
analysis of rotating disks was presented. Natural
frequencies and vibration modes were obtained. The
accuracy of the presented solution was tested against
previous results for vibration analysis of non-rotating
annular plates, and the effect of the ratio of radii and
rotation speed on the natural frequencies were
investigated. Numerical results showed that all
frequencies increase as values of the rotating speed,
ratio of radii and circumferential mode number
increase.

References
1- Leissa A.W., Vibration of plates, NASA SP-160,
Washington D.C., 1969.
2- Lamb H., Southwell R.V., The vibrations of a spinning
disk, Proceedings of the Royal Society of London, Vol.99,
1991, pp. 272–280.
3- Southwell R.V., On the free transverse vibration of a
uniform circular disk clamped at its center; and on the
effects of rotation, Proceedings of the Royal Society of
London, Vol.101, 1992, pp. 133–153.

0 2 4 6 8 10
5

10

15

20

25



 1
k

k=0
k=1
k=2
k=3

0 2 4 6 8 10
35

40

45

50

55

60

65

70



 2
k

k=0
k=1
k=2
k=3

0 2 4 6 8 10
105

110

115

120

125

130

135

140

145



 3
k

k=0
k=1
k=2
k=3

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

20

30

40

50

60

70

80

90

100



 1
k

k=0
k=1
k=2
k=3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

100

200

300

400

500


 2
k

k=0
k=1
k=2
k=3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

200

400

600

800

1000

1200

1400

1600



 3
k

k=0
k=1
k=2
k=3

Archive of SID

www.SID.ir

http://www.sid.ir


4- Barasch S., Chen Y., On the vibration of a rotating
disk, Transactions of the American Society of Mechanical
Engineers, Journal of Applied Mechanics, Vol.39, 1972, pp.
1143–1144.
5- Simmonds J.G., The transverse vibrations of a flat
spinning membrane, Journal of the Aeronautical Sciences,
Vol.29, 1962, pp.16–18.
6- Simmonds J.G., Axisymmetric, transverse vibrations of
a spinning membrane clamped at its center, American
Institute of Aeronautics and Astronautics Journal, Vol.1,
1963, pp. 1224–1225.
7- Eversman W., Transverse vibrations of a clamped
spinning membrane, American Institute of Aeronautics and
Astronautics Journal, Vol.6, 1968, pp. 1395–1397.
8- Eversman W., Dodson, R.O., Free vibration of a
centrally clamped spinning circular disk, American Institute
of Aeronautics and Astronautics Journal, Vol.7, 1969, pp.
2010–2012.
9- Mote JR. C.D., Free vibration of initially stressed
circular disks, Transactions of the American Society of
Mechancial Engineers, Journal of Engineering for Industry,
Vol.87, 1965, pp. 258–264.
10- Harish M.V., Natural frequencies and mode shapes of
flexible spinning disks, M.S. Thesis, Arizona State
University, 1992.
11- Irie T., Yamada, G., Kanda, R., Free vibration of
rotating non-uniform discs: spiline interpolation technique
calculations, J. Sound Vib, Vol.66, 1979, pp. 13-23.
12- Mignolet M.P., Eick C.D., Harish M.V., Free vibration
of flexible rotating disks, J. Sound Vib, Vol.196, 1996, pp.
537-577.
13- Bert C.W., Malik M., Differential quadrature method in
computational mechanics: A review, Appl. Mech. Rev,
Vol.49, 1996, pp. 1-28.
14- Du H., Lim M.K., Lin N.R., Application of generalized
differential quadrature method to structural problems, Int. J.
Num. Meth. Engng, Vol.37, 1994, pp. 1881-1896.

Archive of SID

www.SID.ir

http://www.sid.ir

