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Abstract
In this paper, analytical solutions of a class of optimal
line-of-sight (LOS) guidance laws are derived for
moving targets using linearized model. The pursuer
control dynamics is assumed to be perfect and the
maneuvering acceleration is applied normal to LOS.
The closed-loop optimal solutions are obtained for
four different final conditions, i.e., fixed or free final
position and normal velocity. The final angle
constraint may be applied by the final normal
velocity.
Keywords: Optimal Guidance – Line of Sight
Trajectory – Three Point Guidance.

Introduction
In three-point guidance, a pursuer maneuvers so as to
be on the line-of-sight (LOS) between the target
tracker (or reference point) and the target. This
guidance law is also called LOS guidance [1-4].
Two implementations of LOS guidance are used in
practice, namely, Command-to-LOS (CLOS) and
beam riding. Beam riding performance can be
significantly improved by taking the beam motion into
account in a CLOS system [1-4].

Most literature on LOS guidance dealt with the
design of controllers with different control techniques,
such as classical control [5,6], feedback linearization
[7], variable structure [8], fuzzy-logic [9-11], and
optimal control [12-14].

Analytical solutions of LOS guidance problems are
more difficult than two-point guidance problems,
because of the trajectory constraint, so only simple
cases have been obtained in closed-form [15,16].
Closed-loop solutions of optimal three-point guidance
laws are also more complex than the two-point
strategies. The optimal solution for perfect control
system has been obtained in Ref. [13] for stationary
targets. The optimal solution for the first-order control
system has been presented in Ref. [14] for stationary
targets, as well. To the author's knowledge, the
available closed-loop optimal LOS solutions have
been developed only for stationary targets.

In this work, the optimal solutions of LOS
guidance laws are derived for moving targets with
different final conditions using linearized model.

Linearized Formulation
Consider pursuer P and its target in polar
coordinates ( , )r  . The origin of the polar coordinates
is located on the tracker as a reference point. The
governing equations of motion of particle P in polar

coordinates are given by
2

rp p p pr r a  (1a)

2p p p p pr r a


    (1b)

where ( , )ra a are the pursuer acceleration components

in polar coordinates and the subscript p stands for
pursuer P. The angle error is denoted by

p T    (2)

where the subscript T stands for target T. The pursuer
distance from the tracker-to-target line-of-sight is
approximated by

( )p p p Th r r    (3)

Equation (1b) can be rewritten in terms of h , that is,

( 2 )m
p T p T p
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r
h h r r a

r 
    

   (4)

In our linearized model, the pursuer distance from
tracker O is given as a function of time. Using this
assumption, the state-space equations are simplified as
follows:
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(5)

Optimal Guidance Problem and Solution
Here, the guidance problem is to minimize the
following performance index

0

2 21
[ ( ) ( ) ] ,

2
ft

pt
J b t h R t u dt u a


   (6)

subject to state equation (5) where b(t) and R(t) are
positive weighting coefficients and ft is the

predetermined final time. The initial conditions are

0 0 0 0( ) , ( )h t h t   (7)

Here, four different final conditions are considered as
follows:
Case a) ( ) ( ) , ( ) freef f fh t h t t 
Case b) ( ) free , ( ) freef fh t t 

Case c) ( ) ( ) , ( ) ( )f f f fh t h t t t   

Case d) ( ) free , ( ) ( )f f fh t t t   
where superscript star denotes the desired final value.

The Hamiltonian is given by

2 21 1
( ) ( )

2 2
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H R t u b t h
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 


(8)

where h and  are costates and

( ) ( 2 )p T p Tf t r r     (9)
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The optimality conditions give
/ ( )u R t  (10)

( ) m
h v

m

r
b t h

r
   

 (11)

h   (12)

Therefore, the state equations for states and costates
are
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(13)

The above system is linear time-varying, that is,
( ) ( )X A t X F t  (14)

0
0 0( ) ( , ) ( ) ( , ) ( )

t

t
X t t t X t t F d      (15)

( ) ( , ) ( ) ( , ) ( )
ft

f f t
X t t t X t t F d      (16)

where ( )A t is the system matrix, 0( , )t t is the state

transition matrix, and
[ ]ThX h    (17)

0 1 0 0

/ 0 0 1/ ( )
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( ) 0 0 /

0 0 1 0

m m

m m

r r R t
A t

b t r r

 
  
  
 

 




(18)

( ) [0 ( ) 0 0]TF t f t (19)

Therefore, the solution of state equation (13) is
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In a compact form, we have

0
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where iX is the ith element of the state vector X and

ij is the ijth elememt of the state transition matrix.

Depending on final conditions, two equations are
selected from the above four equations, e.g., for case
b, we have ( ) free, ( ) free.f fh t t  Since the final

time is fixed, we have ( ) 0, ( ) 0.h f ft t   Therefore,

we have a set of two equations with two unknown h

and , that is,
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Then,  is obtained from the above set of two

equations with two unknown costates, that is,
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Finally, the optimal control is obtained from
/ ( ).u R t 

A similar approach is used for the other cases.
Hence, the optimal solutions for the mentioned cases
are summarized as follows:

Case a) ( ) ( ) , ( ) freef f fh t h t t  [i=1, j=4]:

fh d h fu c h c u c h      (33a)

Case b) ( ) free, ( ) freef fh t t  [i=3, j=4]:

h du c h c u    (33b)

Case c) ( ) ( ) , ( ) ( )f f f fh t h t t t    [i=1, j=2]:

f fh d h f fu c h c u c h c        (33c)

Case d) ( ) free , ( ) ( )f f fh t t t    [i=3, j=2]:

fh d fu c h c u c       (33d)

where the guidance coefficients are

3 1 3 1[ ( , ) ( , ) ( , ) ( , )] /h i f j f j f i fc t t t t t t t t D     (34)

3 2 3 2[ ( , ) ( , ) ( , ) ( , )] /i f j f j f i fc t t t t t t t t D      (35)

3 ( , ) /
fh j fc t t D  (36)

3 ( , ) /
f i fc t t D   (37)

3 4 3 4[ ( , ) ( , ) ( , ) ( , )] ( )i f j f j f i fD t t t t t t t t R t     (38)
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Also, the control term related to moving beam is given
by

3 2

3 2

( , ) ( , ) ( ) /

( , ) ( , ) ( ) /

f

f

t

d i f j ft

t

j f i ft

u t t t f d D

t t t f d D

  

  

  

 




(39)

For time-invariant system, we have ( , ) ( )ij f ij got t t  

where got is the time-to-go the final time ( ).go ft t t 

The time-to-go until the final time is approximated by
the pursuer-target relative range divided by closing
velocity.

Cases a and b can be utilized for LOS guidance,
but Cases c and d with final normal velocity may be
preferred for trajectory tracking. The final trajectory
angle can be applied by the final normal velocity.
Also, Cases c and d may be used for LOS guidance
with final dive angle. Moreover, as a modified LOS
guidance against moving target, the final normal
velocity can be computed from collision triangle.

Special case
Consider a special case in which the target angular
velocity is constant. Also, the pursuer range rate is
assumed constant, that is,

cosp p ar V  (40)

where pV is the pursuer speed,  is the angle between

the pursuer velocity and the tracker-pursuer LOS, and

a is the average value of  between current time and

the final time. To calculate du , we assumed a to be

constant. Therefore,

( ) 2 cosp T af t V     (41)

Using the following property of the state transition
matrix:

( , ) ( , ) ( )f f

d
t t t t A t

dt
   (42)

and assuming R(t) to be constant, we can obtain

2 4 4( , ) [ ( , ) ( , )]
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i f i f f i ft
t d R t t t t     (43)

Also,

4

1 for 4
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0 for 4i f f

i
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i


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(44)

Therefore,

2

4

44

( , ) ( ) 2 cos

( , ) for 4

1 ( , ) for 4
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k f

f

t f d RV

t t k

t t k

       

 
  

 

(45)

For Cases c and d, we have , 4i j  . In this case the
relation for ud simplifies to

2 cosd p T au V    (46)

For Cases a and b, we obtain

3 ( , )
2 1 cosi f

d p T a

t t
u V

D
 

    
 (47)

Concluding Remarks
A class of closed-loop optimal line-of-sight guidance
laws is developed for moving targets assuming a point
mass pursuer having perfect control system. The

solution is obtained using linearized model in which
the pursuer range is given as a given function of time
and the maneuvering acceleration is applied normal to
LOS. Since, the governing equations are uncoupled in
the linearized model, the solution can be extended to
two-dimensional case. Moreover, different final
conditions are considered in the solution, i.e., final
position and final normal velocity are applied fixed or
free, depending on application. Here, the final angle
constraint is applied by final normal velocity for
better trajectory tracking problem.

Appendix A
The state transition matrix can be solved for special
cases. The system matrix is simplified by assuming

0mr  , that is,

0 1 0 0

0 0 0 1/ ( )
( )

( ) 0 0 0

0 0 1 0

R t
A t

b t

 
  
 
 

 

(48)

Also, the state transition matrix for R(t)=1 and b as a
positive constant is simply obtained using the
following relation:

1 1( ) L ( )t sI A      (49)

where s is the Laplace domain variable and L-1

denotes the Laplace inverse transform.

11( ) cosh cost t t   (50)
1/4

122 ( ) cosh sin sinh cosb t t t t t      (51)
3/4

132 ( ) cosh sin sinh cosb t t t t t      (52)

14 ( ) sinh sinb t t t   (53)
1/4

212 ( ) cosh sin sinh cosb t t t t t        (54)

22 ( ) cosh cost t t   (55)

23 ( ) sinh sinb t t t   (56)
1/4

242 ( ) cosh sin sinh cosb t t t t t       (57)
3/4

312 ( ) cosh sin sinh cosb t t t t t        (58)

32 ( ) sinh sint b t t    (59)

33 ( ) cosh cost t t   (60)
1/4

342 ( ) cosh sin sinh cosb t t t t t       (61)

41( ) sinh sint b t t   (62)
1/4

422 ( ) cosh sin sinh cosb t t t t t       (63)
1/4

432 ( ) cosh sin sinh cosb t t t t t       (64)

44 ( ) cosh cost t t   (65)

where

1/4 / 2b  (66)
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