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Abstract
This work is concerned with the computation of two-
sided lid-driven square cavity flows by the Lattice 
Boltzmann Method (LBM) to obtain multiple stable 
solutions. The velocity field is solved by an 
incompressible generalized lattice Boltzmann method. 
In the two-sided square cavity two of the walls move 
with equal velocity move in such a way that parallel 
walls move in opposite directions with the same 
velocity. Conventional numerical solutions show that 
the symmetric solutions exist for all Reynolds 
numbers for all the geometries, whereas multiplicity 
of stable states exist only above certain critical 
Reynolds numbers. Here we demonstrate that Lattice 
Boltzmann method can be effectively used to capture 
multiple steady solutions for all the aforesaid 
geometries. The strategy employed to obtain these 
solutions is also described. At low Reynolds numbers, 
the resulting flow field is symmetric with respect to 
one of the cavity diagonals for the two-sided driven 
cavity, while it is symmetric with respect to both 
cavity diagonals for the four-sided driven cavity. It is 
found that for parallel motion of the walls, there 
appears a pair of counter-rotating secondary vortices 
of equal size near the center of a wall. Because of 
symmetry, this pair of counter-rotating vortices has 
similar shapes and their detailed study as to how they 
grow with increasing Reynolds number has not yet 
been made by lattice Boltzmann Method.
Keywords: Lattice Boltzmann Method - D2Q9 model 
- Two-sided square cavity - parallel and antiparallel.

Introduction
In recent years, lattice Boltzmann methods have 
become a powerful numerical method for simulating 
fluid flow in different types of flow fields as porous 
media, multiphase flows, microfluidics and nanofluids 
[1-5].

The lid-driven cavity flow is not only technically 
important but also of great scientific interest because it 
displays almost all fluid mechanical phenomena in the 
simplest of geometrical settings. The classical cavity 
problem has attracted considerable attention because 
its flow configuration is relevant to many industrial 
applications and academic research [6–8]. It is known 
that cavity flows arise in applications such as short-
dwellcoating, drug-reducing riblets in aerodynamics, 
removal of species from structured surfaces, mixing 
and flow in drying devices.

A number of experimental and numerical studies 
have been conducted to investigate the flow field of a 
single-sided lid-driven cavity flow in the last several 

decades. The features of the single-sided lid-driven 
cavity flow consist of a large primary eddy and 
secondary corner eddies. Several flow characteristics 
like flow instability, corner eddies and transition to 
turbulence can be observed in this system. 
Conventional numerical solutions reveal that in a 
single-sided cavity flow beyond the critical Reynolds 
number, Hopf bifurcation takes place with the steady-
flow solution becoming unstable.

The single-sided lid-driven cavity flow problem 
was extended to two-sided lid-driven cavity by 
Kuhlmann and other investigators [9–14] and they 
have done several experiments on the two-sided lid-
driven cavity with various spanwise aspect ratios. 
They numerically simulated the rectangular cavity 
flow for parallel and antiparallel motion of two of the 
walls and showed that a plethora of vortex patterns 
can be generated with different aspect ratios and 
directions of motion of the walls. Kuhlmann et al. 
[9,10] extended the one-sided lid driven cavity 
problem to a two-sided problem, where the flow is 
driven by the parallel or antiparallel motion of two 
facing walls. The facing walls could be either the left 
and right walls or the upper and lower walls. At low 
Reynolds number, the flow consists of separate co- or 
counter-rotating primary vortices that form adjacent to 
each moving wall. At higher Reynolds numbers, 
instabilities arise in the flow due to the interaction 
between the two primary vortices. Moreover, their 
results showed that multiple flow solutions may exist, 
depending on the cavity aspect ratio and the value of 
the Reynolds number.

Albensoeder et al. [11] were among the first to 
investigate the nonlinear regime and find multiple 
two-dimensional steady states in rectangular two-
sided lid-driven cavities. They have found five and 
seven flow states in parallel and antiparallel motion 
respectively. Luo and Yang [15] numerically 
investigated flow bifurcation with and without heat 
transfer in a two-sided lid-driven rectangular cavity. 
More recently, the multiplicity of flow states induced 
by the motion of two sided non-facing lid-driven 
square cavity flow and four-sided lid-driven cavity 
flow have been investigated by Wabha [16]. He found 
the critical Reynolds numbers of 1073 for the two-
sided non-facing lid-driven square cavity and 129 for 
the four-sided lid-driven square cavity, beyond which 
it is possible for multiple steady states to exist.

Lattice Boltzmann Method
An incompressible generalized lattice Boltzmann 
method, in that the collision takes place in the moment 
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space ℜ spanned by the vectors while the streaming 
step takes place in velocity space  spanned by vectors 
f has been used for simulation of fluid flow. This 
method can be written as in the following two steps

1
( , ) ( , ) [ ( , ) ( , )]

eq
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Where ( , )if x t and ( , )if x t signify the pre-collision 

and post-collision states of the particle distribution 
functions, respectively. M is the one-to-one and linear 
transformation, by which the vectors in the velocity 
space are mapped to the vectors in the moment space, 
and vice versa as
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This transformation matrix M is easily determined 
using the Gram–Schmidt orthogonalization procedure 
to monomials of Cartesian components of the discrete 
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and the diagonal relaxation matrix S, is given as,

(6)

where parameters ( 0,1, ,7,8)
i

s i   are easily 

obtained using the Chapman–Enskog expansion 
procedure and the linear stability analysis. To satisfy 
the stability condition, the relaxation rates must satisfy 

this inequality, 1 2
i

s  The relaxation rates 

pertaining to the seventh and eighth directions have to 
be equal and can be calculated in the following form,
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Where  is the kinematic viscosity.
The quasiequilibria, to which the moments are 

relaxed, can be easily obtained through the 
optimizations of the isotropy and Galilean invariance 
of the method. For the D2Q9 model, these equilibria 
are defined as,
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Where p is pressure, 
x

u and 
y

u are the horizontal 

and vertical velocity components in the lattice domain, 
respectively. These quantities can be calculated as
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Where 
0

 is equal to 4/9.

Code validation and grid independence
It is shown on table 1 that with increasing the grid 
density from (101×101) to (201×201), the relative 
change in the value of the stream function at the center 
of the primary vortex is less than 1%, confirming that 
computed results on the (101×101) grid are indeed 
grid independent. Also to validate the present 
numerical method, the LBM code is used to compute 
the single lid-driven flow in a square cavity on a 
(101×101) lattice. A lid velocity of U = 0.1 is 
considered in this work. Fig. 1-(a) depicts the 
streamline pattern at Re = 1000 obtained through 
LBM, which closely resembles those given by Ghia et 
al. [7]. Fig. 1-(b) show the comparison of steady-state 
u-velocity profile along a vertical line and v velocity 
profile along a horizontal line passing through the 
geometric center of the cavity at Re = 1000. It is 
observed that the agreement between the present LBM 
results and Ghia’s work used for comparison is 
excellent. Thus the present LBM code stands 
validated.

Table 1: Grid study: Properties of primary vortex for 
onesided lid driven cavity flow (Re = 1000)

Reference Grid x y

Present work 51×51 0.539 0.573

Present work 101×101 0.535 0.569

Present work 201×201 0.533 0.567

Ghia et al. [7] 129×129 0.531 0.562

Results and discussions

Problem statement for two-sided parallel square 
cavity flow
The boundary conditions for the parallel wall motion 
are shown in Figure 2. In the parallel motion we 
consider, both the upper and lower plates move from 
left to right in the x direction with the same velocity.

 
3 4 5 6 7 8

0 0 0S diag s s s s s s
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Figure 3 shows the streamline patterns for 
various Reynolds numbers on a 101×101 lattice 
structure. Expectedly, the streamlines are found to be 
symmetrical with respect to the horizontal centerline. 
Figure 3(a) shows the streamline pattern for 
Two counter-rotating primary vortices symmetrical to 
each other are seen to form with a `free’ shear layer in 
between. At this Reynolds number the primary vortex 
cores are seen to be somewhat away from the centers 
of the top and the bottom halves of the cavity towards 
the right hand top and right hand bottom corners 
respectively. Figure 3(b) shows the streamline pattern 
for Re = 400. At this Reynolds number is seen also a 
pair of counter-rotating secondary vortices 
symmetrically placed about the horizontal centerline 
near the centers of the right wall. Figures 3(c) and 3(d) 
show the streamline patterns for Re = 1000 and 
2000 respectively. It is seen that with the increase in 
Reynolds number the primary vortex cores move 
towards the centers of the top and bottom halves of the 
cavity and the secondary vortex pair grow in size. At 
all the Reynolds numbers the counter-rotating pairs of 
primary and secondary vortices maintain their 
symmetry about the horizontal centerline

Figure 4 shows the comparison for horizontal 
velocity profiles along vertical lines passing through 
different points of the cavity for various Reynolds 
numbers.

Table 1: locations of the vortices for parallel 
wallmotion

Conclusion
In this work a relatively unexplored flow 
configuration in a two-sided lid-driven square cavity 
is computed with the LBM. The velocity field is 
solved by an incompressible generalized lattice 
Boltzmann method. In the case of parallel wall 
motion, besides two primary vortices, there also 
appears a pair of counter-rotating seco
symmetrically placed about the centerline parallel to 
the motion of the walls. About this centerline also 
appears a ‘free’ shear layer with the increase in 
Reynolds number.

TSVBPVTPVRe

xyxyx

-0.200.610.790.61100

0.520.980.230.580.750.58400

0.530.950.240.530.750.531000

0.530.930.240.510.750.512000

Figure 3 shows the streamline patterns for 
various Reynolds numbers on a 101×101 lattice 
structure. Expectedly, the streamlines are found to be 
symmetrical with respect to the horizontal centerline. 

line pattern for Re = 100. 
rotating primary vortices symmetrical to 

each other are seen to form with a `free’ shear layer in 
between. At this Reynolds number the primary vortex 
cores are seen to be somewhat away from the centers 

the bottom halves of the cavity towards 
the right hand top and right hand bottom corners 
respectively. Figure 3(b) shows the streamline pattern 

= 400. At this Reynolds number is seen also a 
rotating secondary vortices 

laced about the horizontal centerline 
Figures 3(c) and 3(d) 

= 1000 and Re = 
2000 respectively. It is seen that with the increase in 
Reynolds number the primary vortex cores move 
towards the centers of the top and bottom halves of the 
cavity and the secondary vortex pair grow in size. At 

rotating pairs of 
primary and secondary vortices maintain their 
symmetry about the horizontal centerline

the comparison for horizontal 
velocity profiles along vertical lines passing through 
different points of the cavity for various Reynolds 

Table 1: locations of the vortices for parallel 

In this work a relatively unexplored flow 
driven square cavity 

is computed with the LBM. The velocity field is 
solved by an incompressible generalized lattice 
Boltzmann method. In the case of parallel wall 
motion, besides two primary vortices, there also 

rotating secondary vortices 
symmetrically placed about the centerline parallel to 
the motion of the walls. About this centerline also 
appears a ‘free’ shear layer with the increase in 

(a)

(b)

Fig. 1: Code validation: (a) Streamline pattern 
the single-sided lid-driven cavity flow, (b) u

along vertical center line (Re = 1000).

Fig. 2: Geometry and boundary conditions of the 
Two-SidedLid-Driven Cavity for parallel wall motion

BSVTSV

yxy

---

0.4650.980.52

0.4690.950.53

0.4580.930.53

Fig. 1: Code validation: (a) Streamline pattern for 
driven cavity flow, (b) u-velocity 

along vertical center line (Re = 1000).

2: Geometry and boundary conditions of the 
Driven Cavity for parallel wall motion
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(a)

(b)

(c)

(d)
Fig. 3: Streamline pattern for parallel wall motion at (a) 

Re = 100 (b) Re = 400(c) Re = 1000 and (d) 
Streamline pattern for parallel wall motion at (a) 

= 1000 and (d) Re = 2000

(a) Re = 100

(b) Re = 400

= 100

= 400
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(c) Re = 1000

(d) Re = 2000
Fig. 4:horizontal velocity u along vertical lines (
0.50, 0.75) and vertical velocity v along horizontal lines 

(y=0.25, 0.50, 0.75) for different Reynolds numbers

along vertical lines (x=0.25, 
along horizontal lines 

for different Reynolds numbers
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