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1) Abstract:

The main objective of this study is to investigate the phenomenon of water
impact underneath the decks of offshore structures due to propagating waves.
The decks of offshore structures may be subjected to wave induced loads,
which may be not accounted for in the original design. For safe design of
offshore platforms, it is important that the hydrodynamic loads and the
structural response due to wave impact underneath decks of platforms are
predicted accurately.

In this report, a review of the previous work on this topic with a brief
introduction to slamming theory together with a proposed procedure to predict
the water impact underneath the decks of floating offshore structures will be
presented.

Meantime, three dimensional hydrodynamic analysis of a semi-submersible in
sea waves has been performed by using the direct boundary element method.

2) Previous work:

The general problem of hydrodynamic impact has been studied extensively
motivated by e.g. its importance for horizontal members in the splash zone of
offshore platforms, bottom and bow-flare slamming on ships, green water
impact on deck

structures of ships and wet-deck slamming on catamarans. In offshore
structures Kaplan and Silbert(1976) developed a solution for the forces acting
on a cylinder from the instant of impact to full immersion. Faltinsen et
al.(1977) investigated the load acting on rigid horizontal circular cylinders
(with end plates and length-to-diameter ratios of about one) which were forced
with constant velocity through an initially calm free surface. Sarpkaya(1978)
imvestigated forces acting on horizontal cylinders subjected to impact by a
sinusoidally oscillating free surface both theoretically and experimentally.
Miller(1980) presented the results of a series of
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wave-tank experiments to establish the magnitude of the wave-force slamming
coefficient for a horizontal circular cylinder. Kaplan(1992) applied a method
similar to the technique used in analysis of ship slamming phenomena in order
to determine the time histories of impact forces on horizontal circular members
and flat deck structures of offshore platforms.

The work performed on wave impact under platform decks is more limited, but
it has been considered by many researchers. A more extensive theoretical
analysis procedure for the assessment of the impact loading is given by
Kaplan(1992). His model considers also the water exit force, i.e. the force
when the wetted area reduces. Also Kaplan uses a Von Karman approach, but
he includes both the slamming force and the added mass force due to the
wetting of the deck. In addition, he includes a drag force by using a drag
coefficient for viscous flow passed a flat plate.

In this paper, although 2-dimensional Wagner based theory for slamming
analysis has been developed, but as a reasonable move regarding 3-d nature of
slamming, the relative local velocity between offshore structure and sea water
surface will be achieved by using 3-dimensional panel method (direct BEM).

3) Three-Dimensional Hydrodynamic Analysis of Interaction
between Sea Waves and Semi-submersible:

3-1) Boundary Value Problem:

It 1s assumed that floating offshore structure, in this research semi-submersible,
is oscillating with small amplitudes to respond to regular incident waves of
small amplitudes in deep water. In linear wave theory, this general boundary
value problem can be assumed to be a linear superposition of the following
sub-problems:

1) the incident waves encountered by semi-submersible will be
diffracted from it assuming that the semi-submersible is rigidly
held in its fixed position. This is called the “ Diffraction
Problem “;

11) as soon as the waves are diffracted, the semi-submersible is
assumed to oscillate sinusoidally in previously calm water. This
is known as the
“ Radiation Problem “.

Assuming that the fluid is ideal of infinite depth and that its motion is
irrotational, the total velocity potential of the flow motion can be written by a
time-dependent potential, @ :
D(x,p,2,1)=D, + D, +D,
Where @, is the incident wave potential:
) = ﬁer(ﬂxsin p+ky cos _H)e—mx

@
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where A 1s the wave amplitude, @ 1s the wave radian frequency, f = 1s the

wave number, and u is the heading angle.

As it can be seen in Figure 1, a right-handed coordinate system (Xo,yo,2o) fixed
with respect to the mean position of the body is used, with positive z, vertically
upwards through the centre of gravity of the platform and the origin in the
plane of the undisturbed free-surface, the xy-axis pointing towards the front and
the yo-axis pointing to port side. The x¢-zy and y(-z, planes will be considered
as planes of symmetry for the semi-submersible under consideration.
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@, is the diffraction potential and ®, =3 ¢ (x,y,z)v, e™ is the radiation
¥ ,.

potential, where v indicates the complex amplitude of velocity in direction j,

so ¢, is the local radiation potential due to the j™ mode of motion as described

in and only depends on the body geometry corresponding to a harmonic
velocity amplitude of 1 m/s and 1s therefore independent of the as yet unknown
body responses or velocities.

So the total velocity potential:

; . 6 )
(D(x,y, Z,f): @(x,ynz)e—rmr — (@1 +¢';_; +¢'R )e—mjf — (¢'U +¢? + Zejjva; )e—:m{

The solution to the above described boundary value problem should be found
from a set of conditions which are to be satisfied by the flow motion potential
¢ and given as:

e Laplace equation in the fluid domain:
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e a linearized boundary condition on the free surface (S,):

0 o’
% w=0 on z=0
dz g
e a bottom condition on the sea floor (S3):
0P
3 0 on z= -h ( his sea depth)
e aradiation condition at a large distance from the semi-submersible (S,):
. oD
lim ~/kr [E - fkd:-) =0 (Sommerfeld radiation condition)
kr — oo

where k is the wave number and r is the radial distance from the centre of the

structure in all directions.

e the kinematic boundary condition on the semi-submersible’s mean wetted
surface (S,) given by

a(D a¢0 a¢? =i
il _+_ =
on =Con on Z e
6 . : .
where v, = ;g (?}a ot ), = —:.cu(z_: 7?9_:”;)'3 i 1s the normal velocity

component of a point on the body surface, wherez, indicates the complex

amplitude of the motion responses in 6 degrees of freedom.

In accordance with the above described linear superposition assumption, a
further decomposition of the kinematic boundary condition yields the following
for the radiation problem:

99, :
nj _]21923"':6 , 0N SQ
on
and for the diffraction problem:
¢, 09,
=0 S
n " on 012

n . are direction cosines on the body surface

where n=in;+jn,+kn; denotes the outward unit normal vector on wetted surface
and d denotes the depth of submergence of the centre of gravity in respect of
centre of coordinate system.

3-2) Forces and Moments — Equation of motion:
The forces and moments # follow from an integration of the pressure, p, over
the submerged (wetted) surface, S, of the body:
F=-[[(pn).dS
Ry



in which » is the outward normal vector on surface dS and in the O(xo,y0,2)
coordinate system.
The pressure p -via the linearized Bernouli equation- is determined from the

velocity potential by:

P =P PE,

or

d
p=—,oa(¢; + @, +(DH)_1ngt|

Having obtained the various force and moment components, it can be then
constructed the equation of motion for the jth direction by applying Newton’s
second law of motion:

6 . [R—

Z(M!.k ?;k]:j«'f =1,2,....6

k=1

where A, is the mass matrix coefficients.

If a symmetrical distribution of masses with respect to the plane y,=0 is
assumed, and with respect to further simplification for double symmetrical
bodies like semi-submersible, the mass matrix is expanded as follows:

m 0 0 0 mz,_ 0
m 0 -mz, 0 0
0 0 m 0 0 0
M =
0 —mz, 0 m,, 0 0
mz 0 0 0 me, 0
0 0 0 0 0 m g

where m is the mass of the body, which in a floating structure is equal to that of
the water displaced, and my; (j=k) correspond to the mass moments of inertia
and m, is the vertical position of centre of gravity.

By substitution above mentioned definitions of forces, equation of motion will
be in the form of: (Faltinsen(1990))

6

Z[(M w At B (?ﬂ_m} =Fe '™ i=1,2,....6

k=1

where 4, and B, are the added mass and damping coefficients that can be

formally written due to harmonic motion mode 7, as:

d’n, 5 dn,

dt? M dt

b L)) 9 5
;OH aIR n,ds ='0H[52¢;"j }?ﬁ.dS _ _A.fg'
5 [ =1

S

[f the structure has zero forward speed and there is no current by using Green’s
second theorem, it can be shown that 4, = 4, and B, = B, (Sarpkaya and

Isaacson(1981)).



The matrix of hydrodynamic added masses, A, for double symmetrical bodies
is obtained as:

All 0 AH 0 Al."\ 0 1
0 A, 0 A, 0
S| As 0 Ay 00 0
0 A, A, 0 0
A, 0 0 0 A, O
(0 0 0 0 0 A

The matrix of potential damping, B, likewise has the form above.
Finally, C is the matrix of restoring forces or hydrostatic stiffness matrix and
for double symmetrical bodies is written as: (Faltinsen(1990))

o 0 0 0 0 0
o 0 0 0 0 0
o o ¢, o 0o o0
“=lo o C., 0 0
0 0 0 Cyq O
0 0 0 0 |
where:
Cy; = pgAy,p

C,.=pgVGMr
C.. = pgVGM .

Here Awp is the waterplane area, V is the displaced volume of water, GM » and
GM | are transverse and longitudinal metacentric heights, respectively.

For a moored structure, additional restoring forces have to be added. However,
the effect of a spread mooring system on the linear wave-induced motion is
generally quite small. In special cases, in particular for long wavelengths, the
mooring system will have an influence.

Fe'™ (j=1,2,...,6) in equation of motion are wave exciting forces and
moments consisting of incident and diffraction components:
a¢ a¢ v . =i v
L Pyn dS = —icwpe™™ [[(¢, + ¢, Jn,dS
5

e =pll5+

From the kinematic boundary condition on the semi-submersible’s mean
wetted surface that described before:

09,

=n.
on !
aﬁ_}_%: 0
on on

So:
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Fy = ~iap[[ (9, +¢,)=dS for j=1,2,...,6
s

in which ¢, is the radiation potential in direction j.

The potential of the incident waves, ¢,, is known and described before, but the

diffraction potential, ¢,, has to be determined. Green’s second theorem

provides a relation between this diffraction potential, ¢,, and a radiation

potential, ¢ :
99, 29,

J v v
J;J'Qﬁo gdb = LJ';I:J. > ds
but 99, = _99 S0:
on on

mﬂﬁ =0, d

This elimination of the diffraction potential results into the so-called Haskind
relations:

¢ a¢'g

Fe '™ =—ivpe ™ _”((251 -9, = o for j=1,2,...,6

So the expression for wave exciting forces and moments (diffraction problem)
depends only on the incident wave potential, ¢,, and the radiation potential, ¢, .

As it described before, the space dependent of incident wave potential in deep
water:
—igA (s 1+l cos jt
¢1 — 8 e{[hhm; oy cos g)
@

So:
99, _ lgA ( k){—sm U+ ?cos ﬂ} e/ Frsinuthyeos i) — jk gy dn, sin t+n, cos u}

on

hence:
Fe™™ =—iape™™ [[¢;n,dS + ke ™ [[¢,6 {n, sin u+n, cos u}dS
5 5

The first term in the expression for the wave loads 1s the so-called Froude-
Krilov force or moment, which is the wave load caused by the undisturbed
incident wave. The second term is caused by the wave disturbance due to the
presence of the (fixed) body, the so-called diffraction force.



3-3) Formulation of Hydrodynamic Analysis of Interaction
between a Semi-submersible and Sea Waves using Direct

Boundary Element Method:
By introducing the approximate solution into above mentioned formulas for ¢,

and its flux functions, the errors will be produced. For minimizing these errors,
three dimensional fundamental solution of Laplace’s equation as the weighting
function 1s applied as follows:

00 2 _ 00, _
[(v2o, h'a = j[ 2 _a)_(g)f_ }f‘ds + I[ﬂ—nj}u”ds+
3 : s\0z g = 5\ on
00 00, )
-+ I ¢j .fsds + -[ Q)J —!kﬂj ugci? 9.]:1929"'96
5\ 0z 5\ on !
o 1
where: 4" = —
47y
"':\/(x_xr)g +(}"—}’,-)2 +(Z_Zr)2

in which:
X (x,y,z): Field Point
X; (X ,Vi,zi ) : Source Point
By suitable change and by applying Green’s second identity, it can be shown
that:
., . .
P+ j((ﬁf a;; _@ (zj_f.-rrr.*}ds‘ + I [(ﬁf aa”f Ja{? + j[gﬁi! a(;; - ikgﬁj:f}.*JdS' =

5, g $,+5, n s,

= J'nj.-u!. ds
S,

This equation relates the value of u” at the point ‘i’ (in the interior domain Q)
with the values of ¢, over the boundary S.

By moving the point ‘i’ to the boundary and dealing with the problem of
singularity of integrands at this point (source point), finally it can be shown
that: (Brebbi1a(1980))

L ] L]

L4 ou, w’ . du, ou, .
Co, + J'{(éj n -—Q.u, ]ds+ j [g&i o st+ J.{cﬁj n —iko u, }ds =

&,

where:
C;=1 if source point is inside the domain Q
C;= 0 if source point is outside of the domain Q
C;= 1/2 1f source point is on the smooth boundary S



Hence, in order to formulate the problem in terms of boundary element method,
source points will choose on the boundary of the domain under consideration,
and by discretizing the boundary into n elements and choosing the unknown
values, ¢, as the nodes of these elements, above formulation will be solved by

applying numerical integration process, in this research, Gussian quadrature
itegration method.

3-4) Numerical Analysis of KHAZAR Semi-Submersible by

using Direct Boundary Element Method (Case study):

Khazar Semi-Submersible Drilling Unit (KSSDU) 1s the largest semi-
submersible drilling platform in the Caspian Sea, north of Iran, which is under
construction in the

Caspian Sea Complex Yard located at suburb of city of Neka on the coast of
caspian Sea in Iran. The project was awarded to a consortium of the local Iran
Marine Industrial Company (SADRA) and GVA consultants of Sweden by
National Iranian Oil Company. The unit will be operating in the southern
waters of the Caspian Sea with a depth of around 1,000 meters. General
particulars of this platform (shown in Table 1) which is used as the case study
in this research are as follow:

The rigid body motion response amplitude operator (RAO) in 6 degrees of
freedom of KHAZAR semi-submersible in response of heading waves with
time periods from 3 s to 30 s have been calculated by using direct boundary
element method. The water depth was assumed 500 m (deep water) and all
calculations has been made for 19.5 m draught (operational draught).

Table 1- General Particulars (KHAZAR Semi-Submersible):

Length over all (approx.) 98.60 m
Beam over all (approx.) 78.84 m
Width outside Pontoons 734 m
Pontoon length (moulded) 80.56 m
Pontoon width (moulded) 18.68 m
Pontoon height (moulded) 7.5m
Column Diameter moulded) 12.9m
Column spacing, longitudinal 5472 m
Column spacing, transverse 3472 m
Height to Box Bottom 28.5m
Height to Lower Deck 29.7m
Height to Tween Deck 33.0m
Height to Upper Deck 36.5m
Displacement at Transit Draught (7.2 m , spec.grav.=1.01 tonnes/m’) 20665 tonnes
Displacement at Survival Draught (16.2 m , spec.grav.=1.01 tonnes/m’) | 26525 tonnes
Displacement at Operational Draught (19.5 m , spec.grav.=1.01 tonnes/m”) | 28621 tonnes
Air-gap at Still Water (at draught=19.5m) 9.0m




Some results of calculations -which have been produced by the program
written based on direct BEM described before- have been presented in
following charts. For comparison, the results produced by designer (GVA
consultants) have also been shown.
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As it can be seen from these charts, there is a good agreement between direct
boundary element method and the most common method —indirect BEM-
which has been used by GVA Consultants Company.

Next step will be imposing the slamming effect —derivation will be presented in
the next chapter- into equation of motion and studying on its influences on
hydrodynamic behaviour of platform and its structural responses, as well.

4) Wave Slamming Underneath the Deck:

4-1) Introduction:

Impulse loads with high pressure peaks occur during impact between a body

and water. This is often called “slamming”. The duration of slamming pressure

measured at one place on the structure is of the order of milliseconds

(Faltinsen(1990)). It is very localized in space. The position where high

slamming pressure occur changes with time. Slamming pressures are sensitive

to how the water hits the structure.

A fully satisfactory theoretical treatment on slamming has been prevented so

far by the complexity of the problem:

e Slamming is a strongly non-linear phenomenon which is very sensitive to
relative motion and contact angle between body and free surface.

e Predictions in natural seaway are inherently stochastic; slamming 1s a
random process 1n reality.

e Since the duration of wave impact loads is very short, hydro-elastic effects
are large.

e Air trapping may lead to compressible, partially supersonic flows where the
flow in the water interacts with the flow in the air.



Classical theories approximate the fluid as inviscid, irrotational, incompressible
and this allows a (predominantly) analytical treatment of the problem in the
framework of potential theory.

Von Karman(1929) was the first to study theoretically water impact
(slamming). He idealized the impact as a 2-D wedge entry problem on the
calm-water surface to estimate the water impact load on a seaplane during
landing

Wagner(1932) derived a more realistical water impact theory. He used similar
arguments to Von Karman but considered the effect of the spray roots.
Wagner’s theory can be applied to arbitrarily shaped bodies as long as the
deadrise angle is small enough not to trap air, but not so small that air trapping
plays a significant role. Wagner’s theory is simple and useful, even if the
linearization 1s sometimes criticized. Many experimental studies have checked
the accuracy of Wagner’s theory (Bertram(2000)). Measured peak impact
pressures are typically a little lower than estimated. This suggested that
Wagner’s theory gives conservative estimates for practical use.

4-2) The impact’s hydrodynamic formulation for the Wagner

based method:

Propagating incident waves are assumed. The rigid body motion is described
by six degrees of freedom with respect to a global coordinate system, (xo,yo,Zo).
The (xo,y0,20)-coordinate system is earth fixed and attached to the mean body
position, i.e. no drift forces are assumed and thus the body has zero mean
velocity. The coordinate system is right-handed, with positive z-axis vertically
upwards through the body’s centre of gravity. The x¢yo-plane is located on the
undisturbed free surface. Let the oscillatory translatory displacements parallel
to the xo-, yo-, and z,-axis be referred to as surge, sway, and heave respectively,
and denoted as m;, M, and m3;. The angular oscillatory displacements of the
rotational motions about the same axes are denoted as m4, ms, and mg, 1.€. roll,
pitch and yaw respectively. See the illustration in Figure 1. A two-dimensional
problem is assumed. Accordingly, the y-axis can be omitted. This 1s the
situation shown in Figure 5, where the waves propagate along the positive x,-
axis. Small body motions are assumed so that sinns~ms and that cosms~1.
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Three coordinate systems are shown in the figure. The (x;,z;)-coordinate
system is right-handed and body fixed. Its axes and origin are located so that
the coordinate system coincides with the global earth-fixed coordinate system
when the body is in its mean position. The relationship between the body fixed
and the earth fixed coordinate systems may be written as:

Xo =X T711 and Zo =2y T — X5

The third coordinate system has its origin in the centre of the instantaneous
wetted part of the deck. The front end, or upstream end, of the wetted length is
defined as xir , while the aft end, or downstream end, of the wetted length is
denoted as x;5, when measured in the body-fixed x,z;-reference frame.
Similarly to the notation used in Faltinsen(1990) for impact problems, half of
the wetted deck length is denoted as c, so that the total length of the wetted part
of the deck is equal to 2c. This gives the following relations between the xz-
and the x,z,-coordinate systems:

X=X —Xp —C and Z=2)=1)

Wherem 1s the deck clearance (air gap) in still water. The different coordinate
systems are shown in Figure 5.

As assumptions of study on the hydrodynamic boundary value problem of the
impact, two-dimensional, irrotational flow and an incompressible fluid are
taken into account. The approximation of two dimensional flow requires head
or beam sea and that the incident waves are long relative to the diameter of the
platform legs (semi-submersible’s columns) so diffraction due to these
members 1s neglected. The fluid flow can be described by the total velocity
potential ® = ¢, + ¢, where ¢ is the velocity potential due to the impact and ¢,

is the known undisturbed incident wave potential. A boundary value problem
(BVP) for ¢ can be set up for each time instant and for a given wetted body



area. The two-dimensional Laplace equation becomes the governing equation
in the fluid domain:

al?+a;?:()

ox* oz

which must be satisfied in the entire fluid domain. To solve above equation,
boundary conditions on the free surface and the wetted body surface are also
required.

The dynamic free surface condition is obtained from Bernoulli’s equation by
mmposing atmospheric pressure on the free surface. It 1s assumed that the
impact occurs over a small time instant, meaning that the gravitational
acceleration g is negligible relative to the impact induced fluid accelerations,
and that the rate of change of ¢ with time is generally larger than the rate of

Vip=

change ¢ with respect to the spatial coordinates. This gives ?3_‘;5' =0 on the free
!

surface. Since the 1nitial value of ¢ 1s zero, this givesg = 0 on the free surface.

When solving the boundary value problem this condition 1s applied on the

horizontal line z=0, i.e. the dynamic free surface condition becomes:

=0 on z=0

This condition implies that no waves will be generated. This dynamic free

surface condition is often used in impact studies. Wagner used this condition in

the outer domain (1.e. outside the spray root).

In addition, the kinematic free surface condition states that a fluid particle on

the free surface remains on the free surface. Also the kinematic condition is

satisfied on z=0.

The body boundary condition 1s defined as:

0D
=

U-n on the wetted body surface

where aa denotes differentiation along the normal direction to the body
n

surface, U is the velocity of the body, and n=(n;,n3) is the unit normal vector of
the body surface. n
is positive into the fluid domain.

Solving for g_‘ﬁ the body boundary condition becomes:

n
99 _ U-n- aa¢f on the wetted length of the deck
n n

For impact with small local dead-rise angle, 1.e. small angle between the body
surface and the free surface at their intersections, above equation may be
approximated as, Faltinsen(1990);

% _ -V, onz=0 and |x/<c(r)

0z

where V, is the relative normal velocity between the body and the fluid. The
impact velocity gets contributions from both the fluid particle velocities in the
incident wave (¢,) and from the rigid body velocity of the deck. 2¢(t) is an



approximation of the wetted length of the deck. The boundary value problem
for ¢ 1s illustrated in Figure 6. The shaded rectangle symbolizes the

instantaneous wetted area, and as it mentioned before, the xz-coordinate system

has its origin at the centre of this area (see Figure 5 ).

Making the assumption that the normal velocity, V,, along the wetted length is
constant, a solution to this problem can be shown in this form: (

Newman(1977), by using conformal mapping technique)

-—

i(p—o =0

S ! X

(-¢(1).0) (e(1).0)

Boundary value problem in simplified analysis of impact between a
two-dimensional body and water

Figure 6, Faltinsen(1990)

p=-V, (CE - xz)i on z=0 and |x| < ¢(r)
$=0 on z=0 and |x| > ¢(r)
Therefore, the hydrodynamic pressure on the body will be:
a¢ c de dV, 2 2 !
P = - = V + le* — 2
'Oa: ’0’(3 z)gdr dt ((' x)
¢ =x")

So, the corresponding vertical force on the body will be:

c c c 1
}*':zjl’dxszrcﬁf dx +dV’ I(cz—x2)2dx=V,£[p£czj+(p£c

2 2

dt ‘°'(c2 _xz)é dr °, dt

)

dv,
dt

where m_ = p%cg is the added mass in heave for the flat plate in infinite fluid.

So:

d dV
ﬁ'_eri+mq ’=i(m,Vr)
- dt Codt dr =~

Therefore, the impact force on the body is equal to time rate of change of

vertical fluild momentum component.
It can be shown that:

F = pm Vrdc+CdVr
: dt 2 dt



The quantities ¢ and f;c are determined from the relative degree of wetting of
{

the deck underside, which are found in terms of the wave elevation and the

vertical motion of the offshore structure as the incident wave travels along the

deck from its initial contact location. The first term on the right in the above

formula continually varies up to the time when the wetted length ¢ reaches the

end of the deck plate, after which %: 0 and that term is then zero throughout
ar

the remaining time that the particular wave elevation is contacting the deck.

S) Conclusion and Further Research:

In this paper, the direct boundary element method- as a new and powerful
method in ocean engineering- for 3-d hydrodynamic analysis of the semi-
submersible in sea waves has been developed and as a case study, some RAOs
for KHAZAR semi-submersible has been produced and compared with results
presented by designer which shown a good agreement.

The derivation of slamming force underneath the deck of semi-submersible has
been done by using Wagner’s theory. Wagner’s theory can be applied to
arbitrarily shaped bodies as long as the deadrise angle is small enough not to
trap air. Many experimental studies have checked the accuracy of Wagner’s
theory (Bertram(2000)).

In this research, although 2-dimensional Wagner based theory for slamming
analysis has been developed, but as a reasonable move regarding 3-d nature of
slamming, the relative local velocity between offshore structure and sea water
surface will be achieved by using 3-dimensional panel method (direct BEM).
As the further research, next step will be composition of hydrodynamic
behaviour of the semi-submersible in sea waves and slamming force due to
mpact wave underneath of deck, with each other and study on this
combination’s effects from different point of views.
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