The Sarvak Formation with the late Albian-early Turonian age is the most prolific hydrocarbon reservoir of the Abadan Plain region. Permeability estimation in heterogeneous carbonate reservoirs, such as, the Sarvak Formation, due to the complexity of pore characteristics is challenging, and porosity-permeability relationship in these reservoirs is dependent on pore type, size and connectivity of pore systems. In this study, permeability estimation has been accomplished using the pore facies concept and empirical formula. Based on the core description, thin sections’ studies and SEM images, pore types were identified and described. Afterwards, with respect to the petrophysical nature of pore systems and their porosity-permeability relationships, four pore facies microporosity (PF-1), microporosity-vuggy (PF-2), vuggy (PF-3) and vuggy-interparticle (PF-4) were introduced. In each pore facies, an empirical formula for the permeability estimation based on porosity-permeability relationship were determined. Comparison the results with the permeability values estimated in previous studies demonstrates that the estimation of permeability on the basis of pore facies concept has higher concordant with depositional and diagenetic characteristics. Generally, the intervals with microporosity and separate vugs, due to the weak pore system connectivity, a lower value of permeability will be estimated. In contrast, the intervals with interconnected pore systems such as touching vugs and interparticle pore spaces show higher permeability in comparing with the other pore types with the same values of porosity. Regarding the importance of pore type and geometry on permeability distribution within the reservoir, permeability estimation in term of pore facies can be useful in investigating the reservoir properties of heterogeneous carbonate reservoirs.