IntroductionThunderstorms pose a significant threat to modern societies and their assets. Despite their local-scale characteristics, severe thunderstorms and associated extreme events like heavy rainfall, hail, gusts, or tornadoes can cause considerable damage to agriculture, buildings, or infrastructure, and facilities. Thunderstorms are highly localized and largely stationary weather systems. They affect a limited area of about 20–50 km2, depending on the size of the cumulus tower. They are associated with shower clouds in which electrical discharges can be seen as lightening and heard as thunder on the ground. They represent an advanced stage in the development of convection in moist air. The importance of the rainfall generated by the thunderstorms lies in the fact that it is largely torrential and of high intensity, and as a result much is lost as runoff which causes flooding. Basically thunderstorms occur more frequently above land areas in the warm season, while they are more frequent in the cold season over oceans. A lot of factors impact their occurrence. Among them the most important are the thermodynamic and kinematic states of the atmosphere, topography, land cover, and its coastal configuration and atmospheric circulation conditions. Ardabil is located in the northwest part of Iran, for this reason it has always been under the influence of the thunderstorms. Due to the geographic location and specific local conditions in this region, every year numerous thunderstorm events happen in this area and cause severe damages to the agriculture, utilities and infrastructure sectors. From this point of view, studying this phenomenon in detail and identifying the synoptic patterns of the ground surface and upper levels in which they are formed in Ardebil are vital and important for the region.