This paper addresses the concept and development of an intelligent education system in concurrent engineering environment based on object oriented technique for conventional processes such as drilling, reaming, boring, slot drilling, end milling, tapping, etc. and unconventional processes such as electrochemical machining (ECM), electro-discharge machining (EDM), electrochemical spark machining (ECSM), ultrasonic machining (USM) and wire-electro-erosion-dissolution machining (Wire-EEDM) for manufacturability evaluation and generation of alternative processes for improving product design. A feature based approach for acquiring design specification is used. Then the system automatically generates all possible alternative processes and estimates machining (cutting) cycle time, and cost, penetration rate, and efficiency for each process. The system works as a process of iterative redesign which suggests a way of using process information to find ways of reducing the cost of each design feature. It also estimates the optimum operation parameters for each process which balances between quality and manufacturing efficiency and to give designers immediate feedback about parameters such as the machining cycle time, cost and quality, efficiency and so on for optimization and give some advice to manufacturing engineers related to feed, speed, penetration rate, machining cycle time and cost saving.