تهیه نقشه کاربری/پوشش اراضی، برای برنامه ریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهوره ای و تکنیک های سنجش از دور، به دلیل فرآهم آوردن داده های بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گسترده ای در تمامی بخش ها از جمله بخش های کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقه بندی کننده های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشه کاربری/پوشش اراضی شهرستان های اردبیل، نیر و نمین مورد ارزیابی قرار گرفت. تصویر سنجنده Operational Land Imager (OLI) لندست 8 (سال 2013) پس از تصحیحات هندسی و توپوگرافیکی تحت این الگوریتم ها قرار گرفته و به 9 طبقه کاربری و پوشش اراضی شامل پهنه های آبی، زراعت آبی، زراعت دیم، چمنزار، برونزدگی سنگی، جنگل، مرتع، عرصه های مسکونی و انسان ساخت و فرودگاه طبقه بندی شد. پس از ارزیابی صحت، صحت کلی برای نقشه حاصل از شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا به ترتیب برابر با 89.91، 85.68 و 94.37 درصد و مقدار کاپای آن ها به ترتیب 0.88، 0.82 و 0.93 برآورد شد که نشان دهنده برتری روش شیءگرا در مقایسه با دو روش دیگر است. هر سه روش توانستند صحتی قابل قبول برای نقشه ها کاربری/پوشش اراضی ارائه دهند. در کل، سه روش طبقه بندی پیشرفته، در منطقه ناهمگن با تغییرات ارتفاعی بیش از 3600 متر با استفاده از نسل جدید تصاویر سنجنده لندست 8 آزمون و مناسب ترین روش تهیه نقشه کاربری/پوشش اراضی معرفی شد.