Introduction Drought is one of the most important weather-induced phenomena which may have severe impacts on different areas, such as agriculture, economy, energy production, and society. From a meteorological point of view, drought can be induced by lack of precipitation, hot temperatures, and enhanced evapotranspiration. The efficiency of the drought monitoring system depends on the index which is selected based on the drought and climate conditions of the region. Precipitation-based drought indices, including the Standardized Precipitation Index (SPI) (McKee et al., 1993), China Z Index (CZI), (Percent of Normal Index) PNI, and others cannot identify the role of the temperature increase in the drought condition and in addressing the consequences of climate change. Recently, two new standardized drought indices have been proposed for drought analysis on multiple time scales: the Reconnaissance Drought Index (RDI) (Tsakiris and Vangelis, 2005) and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente Serrano et al., 2011). The objective of this study is to evaluate the characteristics of drought, according to SPEI, SPI, and RDI. In addition, this study evaluates trends in meteorological drought frequency, duration, and severity during the study period through a multi-indicator approach and at low rainfall regions of Iran, providing a complete picture of the areas that suffered frequent and severe droughts in the past periods. Moreover, this might push towards the development of better frameworks for drought assessment, adaptation, and mitigation, in a possibly drier future...