استان بلوچستان در کشور پاکستان اغلب به دلیل بارندگی کم در معرض خشکسالی های شدید قرار دارد. چندین نوع محرک آب وهوایی بزرگ مقیاس (LSCD) به دلیل تأثیرشان بر بارندگی در سراسر جهان شناخته شده اند، اما در منطقة بلوچستان مطالعاتی در این زمینه وجود ندارد. این مطالعه با هدف شناسایی LSCDهای معنا دار در بلوچستان و بهبود مهارت پیش بینی بارش ماهانه با استفاده از تجزیه و تحلیل مؤلفة اصلی (PCA)، شبکة عصبی مصنوعی (ANN)، شبکة عصبی منظم شدة بیزین (BRNN) و تحلیل رگرسیون چندگانه (MRA) انجام شد. LSCDهای 12ماهه مانند Nino-1+2، Nino-3، Nino-3.4، Nino-4، QBO در 30 و 50 هکتوپاسکال (QBOI و QBOII)، دمای سطح دریا (SST)، دمای هوا (T2M)، ارتفاعات ژئوپتانسیل 500 و 850 هکتوپاسکال، سرعت مداری (500U) و نصف النهاری (V500 وV 850)، شار گرمای نهان و محسوس (LHFOL و SHFOL) و رطوبت ویژه در سطح (SSH) بررسی شدند. همچنین از مجموعه داده های سیستم جهانی جمع آوری داده های زمین (GLDAS)، اندازه گیری بارندگی استوایی (TRMM)، MERRA-2، NOAA و HadISST استفاده شد. نتایج نشان داد LSCDهای معنا دار در سطح اطمینان 99% شامل SSH، SST، LHFOL، SHFOL، T2M، U500، Nino-3.4 و Nino-4 بودند. در طول دورة آزمون، در مقایسه با مدل های MR با ضریب همبستگی 0.15 تا 0.49 و مؤلفه های اصلی با ضریب همبستگی 0.16- تا 0.43، مدل های ANN و BRNN به ترتیب مهارت های پیش بینی بهتری با ضرایب همبستگی 0.40 تا 0.74 و 0.34 تا 0.70 داشتند. نتایج بیانگر توان مدل های ANN و BRNN در پیش بینی بارش ماهانة بلوچستان با استفاده از LSCDهای دارای تأخیر است.