Background and Aim: The aim of exercise training is the cellular level amenities and development of athletic performance. Although, increase of workout intensity more than of physiological capabilities of athletes, will lead to overtraining syndrome. In this regard, this study investigated two training methods on some of immune system biomarkers in young athletes.Materials and Methods: This study was carried out on 45 adolescent athletes that were randomly divided into three groups of strength, speed, and control. The exercise groups were performed one of the strength or speed training for 8 weeks, three times a week, and 90 minutes per session. Research variables (cortisol, testosterone, and white blood cell count) were measured at baseline and 48 hours after the last training session. Data were analyzed by paired sample t-test for within group different and one-way analysis of variance (ANOVA) for between group different (p<0.05).Results: The results showed that eight weeks of strength (p=0.02) and speed (p=0.004) training, significantly decreased cortisol and testosterone concentrations. But, testosterone concentration significantly increased only in strength training. Moreover, the identification of the variance in exercise and control groups showed no significant difference (p>0.05). The within group results showed that free testosterone/cortisol ratio significantly increased in all three groups (p<0.05). But, in between group no significant difference was showed in all three groups. Strength and speed training significantly increased lymphocytes in both groups (p=0.001), monocytes in speed group (p=0.001), and eosinophil in strength group (p=0.05). Also, neutrophils significantly reduced in strength (p=0.03) and speed (p=0.01) training. The variance analysis of exercise and control groups also showed that the neutrophils and lymphocytes were significantly difference (p=0.05).Conclusion: The changes in biomarkers of immune system showed that both of this exercise training (strength & speed) can be useful for immune system and anabolic adaptations.