Kerf width (cutting width) is an important quality parameter in the laser cutting process, and if it is less, means higher cutting accuracy and lower cost of materials. In this study, using a fiber laser-cutting machine, which is one of the new generation lasers, the effect of all parameters affecting the kerf width has been investigated. These parameters include laser power (450 to 750 watts), cutting speed (30 to 130 mm/s), focal point position (5 to +5 mm), nozzle standoff (0. 6 to 2. 5 mm) and gas pressure (1. 2 to 1. 8 bar), for the cut of stainless steel 316L sheet with a thickness of 0. 8 mm. After measuring the kerf width with a special imaging system and analyzing the results with ANOVA, it was found that laser power and gas pressure were directly related to the kerf width and the cutting speed and nozzle standoff were inversely related to the kerf width. Laser focal point position was also determined as the most effective parameter in the formation of the kerf width, which should be on the surface to minimize the kerf width. In this study, it was shown that with the correct adjustment of the parameters, material consumption and cutting accuracy are improved up to 70%. In addition, by using linear regression, the model of kerf width changes with respect to various parameters has been obtained and by comparing its response with the experimental results, acceptable model accuracy has been observed.