مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

90
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

30
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

الگوریتم توازن بار مبتنی بر پیش بینی ELM در محاسبات ابری

صفحات

 صفحه شروع 39 | صفحه پایان 52

چکیده

 از آنجا که تقاضای کاربران و رفتار سیستم از نظر تخصیص منابع, پویا و متغیر با زمان است, بار کاری به شکل متوازن روی منابع ابر توزیع نمی شود. طراحی مکانیزم های مناسب جهت تشخیص وضعیت و توزین مناسب بار روی هر میزبان می تواند نقش موثری در بهبود کارایی سیستم و مصرف انرژی در مراکز داده ابر داشته باشد. روش های توازن بار ارائه شده به صورت واکنشی از ورود سیستم به حالت عدم توازن جلوگیری نکرده و متناسب با شرایط ایجاد شده دست به مهاجرت ماشین مجازی(VM) می زنند. در این روش ها, با ورود سیستم به حالت عدم توازن, انرژی مصرفی و همچنین زمان پاسخ کارها افزایش می یابد. همچنین در روش های توازن بار پیش دستانه, عدم دقت کافی برای تشخیص وضعیت میزبان ها, استفاده از آستانه های ثابت و همچنین مهاجرت ماشین های مجازی به میزبان ها, بدون در نظر گرفتن وضعیت کنونی و آینده آنها, احتمال پربار شدن میزبان ها و افزایش انرژی مصرفی در مراکز داده را بالا می برد. از این رو, روش پیشنهادی این مقاله, بکارگیری یک رویکرد پیش د ستانه با هدف تشخیص زودهنگام وضعیت میزبان ها است که مقدار مصرف پردازنده هر میزبان در آینده, توسط روش ماشین یادگیری افراطی (ELM) پیش بینی می شود و با استفاده از سه آستانه تطبیقی وضعیت آتی میزبان ها مشخص می شود, سپس ماشین های مجازی از میزبان های پربار و درصورت نیاز میزبان های کم بار به آن دسته از میزبان هایی انتقال پیدا می کنند که احتمال پربار شدن آنها بعد از تخصیص کمینه باشد. پیاده سازی روش پیشنهادی و ارزیابی آن روی مجموعه داده واقعی با استفاده از شبیه ساز Cloudsim نشان داده است که روش پیشنهادی در مقایسه با روش پیش دستانه و واکنشی رقیب, در انرژی مصرفی, زمان پاسخ, تعداد مهاجرت های ماشین مجازی و عدم نقض توافقنامه سطح سرویس (SLA) بهبود ایجاد کرده است.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button