مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

63
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

15
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Assessing the uncertainty and risk of design floods at the Darkhovin Nuclear Site

Pages

  126-144

Abstract

 This study aims to determine the design strategy of a Nuclear power plant near the River by assessing flood risk as a design precondition and the Darkhovin Nuclear Site near the Karoun River in Khuzestan Province was considered as a case study. In this study, by sampling the probabilistic space fitted to the flow rate and by filtering and removing Flood flows that does not overflow from the River to the flood plain, the two-dimensional HEC-RAS hydraulic model was used to determine the depth and flow velocity within the power plant site. Frequency analysis of flood depth simulated by the model for different discharges showed that the frequency distribution of flow depth and the generating flood are different from each other. The safe design of a power plant site requires consideration of the many uncertainties that make it difficult to use conventional methods. In this research, for the first time, the Rosenbluet technique was used to evaluate the uncertainty and finally to determine the maximum possible water level for locating the reactor core. The results show that to create the maximum probable depth with a return period of 100 years, there should be a flood with a return period of 10,000 years in Karoun downstream of Ahvaz. The method presented in this research can be the basis of a standard for the safe design of Nuclear power plants in the vicinity of Rivers considering flood hazards.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button