مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

114
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

40
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

مدلسازی هوشمند واریوگرام با استفاده از یادگیری عمیق

صفحات

 صفحه شروع 55 | صفحه پایان 67

چکیده

 محاسبه واریوگرام و پیوستگی فضایی یکی از اولین و مهم ترین فرآیندها در مدل سازی زمین آماری بوده که فرآیندی زمان بر و تجربه محور است. همچنین به دلیل پیچیدگی های محاسبه واریوگرام تجربی, تفسیر و برازش مدل مناسب همواره یکی از چالش های اصلی در این زمینه است. در این مقاله یک روش مدل سازی هوشمند واریوگرام با استفاده از یادگیری عمیق ارایه شده است که می تواند سرعت برازش مدل واریوگرام را افزایش دهد و مانع بروز خطاهای متداول در برازش دستی مدل واریوگرام شود. در این روش از دو شبکه عصبی کانولوشن استفاده شده است. شبکه اول داده های اولیه را تبدیل به نقشه دوبعدی شبیه سازی شده بر مبنای مدل های مختلف واریوگرام می کند. بدین منظور نیاز است تا شبکه اول, با داده های اولیه و شبیه سازی های مانند آن ها آموزش داده شود؛ سپس خروجی این مدل وارد شبکه عصبی کانولوشن دوم شده که در این شبکه تصاویر دوبعدی شبیه سازی شده به عنوان ورودی به شبکه داده می شود و پارامترهای واریوگرام شامل دامنه, آزیموت جهت اصلی, نسبت دامنه جهت اصلی به جهت فرعی و اثر قطعه ای پیش بینی می شود. در این مقاله ابتدا الگوریتم پیشنهادی بر روی داده های دوبعدی مصنوعی پیاده سازی و پارامترهای مدل بهینه شده است. دقت مدل در پیش بینی پارامترهای واریوگرام 97 درصد بوده است. سپس از الگوریتم پیشنهادی برای مدل سازی واریوگرام داده های ژئوشیمیایی منطقه نوچون که شامل عناصر Cu, Zn و Pb استفاده شد که دقت مدل واریوگرام به دست آمده نسبت به مدل دستی برازش شده 90 درصد است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button