مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Seminar Paper

Paper Information

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Seminar Paper

Title

Self-Healing Polymers: Integrating Dynamic Bonds and Shape Memory Repair Mechanisms-a Review

Pages

  -

Abstract

Self-healing Polymers (SHPs) are advanced materials designed to autonomously repair damage, inspired by biological systems. Initially, SHPs focused on embedding healing agents within polymers that would release upon damage. Over time, technological advancements have led to the integration of dynamic covalent and Supramolecular bonds, enabling molecular-level self-repair without external intervention. SHPs now address not only mechanical integrity but also the recovery of electrical and optical functionalities. Mechanisms for self-healing include encapsulation of healing agents, Dynamic Bonds, nanomaterials responding to external stimuli, and shape memory effects (SMEs). Despite significant progress, challenges remain in balancing Mechanical Strength and self-healing efficiency. Research is ongoing to enhance the interplay between chemical and physical processes in self-repair, with a focus on Sustainable Materials. Synthesis methods for SHPs involve various Chemical Processes, such as microencapsulation, dynamic cross-linking, and reversible bonding techniques. Applications of SHPs span automotive, electronics, and energy storage industries, offering benefits like reduced maintenance costs, extended lifespan, and improved durability. Recent innovations include high-performance polymers capable of operating in harsh environments and more commercially viable, eco-friendly materials.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button