مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

39
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

6
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

پیش بینی نوسانات تراز آب زیرزمینی دشت سنقر با استفاده از روشهای یادگیری ماشین

صفحات

 صفحه شروع 99 | صفحه پایان 118

چکیده

 مدلهای عددی بر اساس آمار و اطلاعات گسترده و بر اساس نقشه ها و اندازه گیری های متنوع زمینی مانند آزمایشات پمپاژ, ژئوفیزیک, نقشه های خاک و کاربری اراضی, داده های توپوگرافی و شیب, شرایط مرزی مختلف و بهره گیری از معادلات پیچیده قادر به تخمین تراز آب زیرزمینی در هر منطقه ای هستند. در تحقیق حاضر ابتدا با استفاده از آمار و اطلاعات و نقشه های موجود نوسانات تراز آب زیرزمینی دشت سنقر توسط مدل GMS شبیه سازی شد و دقت مدل در دو مرحله واسنجی و صحت سنجی مورد ارزیابی قرار گرفت. سپس به دلیل نیاز به حجم داده بسیار کمتر در روشهای یادگیری ماشین, روش های هیبرید GWO-ANN و PSO-ANN و مدل های LSTM وSAELM مورد استفاده قرار گرفت. نتایج نشان داد خروجی مدل SAELM دارای بهترین برازش با داده های مشاهداتی با ضریب همبستگی برابر با 97/0 بود, همچنین دارای بهترین و نزدیک ترین پراکندگی نقاط در اطراف خط 45 درجه بود و از این نظر دقیق ترین مدل محسوب می شود. لذا برای پیش بینی تراز آب زیرزمینی در کل دشت بجای استفاده از مدل پیچیده GMS با حجم داده های بسیار زیاد و همچنین فرآیند واسنجی و صحت سنجی بسیار وقت گیر در آن, می توان با اطمینان از مدل SAELM استفاده کرد. این رویکرد کمک زیادی به محققین بخش آب زیرزمینی می کند تا بدون استفاده از مدلهای عددی با ساختار پیچیده و وقت گیر با استفاده از هوش مصنوعی با دقت بالا تغییرات تراز آب زیرزمینی را در سالهای خشک و تر پیش بینی نمایند.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button