مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

11
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

A Novel Method for Identifying Volume Parameters and Monitoring Apple Disease Using Image Processing

Pages

  151-168

Abstract

 The identification and diagnosis of plant diseases have long been considered. This research presents a system for diagnosing the volume and type of apple diseases and the spoilage percentage of rotten apples. To estimate the volume of apples, the method of immersion in water to change the volume of the container was used, ensuring more accurate volume estimation. For disease detection and spoilage analysis, a chamber with constant lighting conditions and a halogen lamp was used. Four images were taken with a camera for better analysis. The volume of apples was calculated through two approximations of the cylinder and incomplete cone. The average error rate in this system was 5%. Also, in the present research, a novel method for feature selection was identified using a combination of the weight feature and the calculated volume of hollow apples. To calculate the percentage of failure of each apple, first, the type of failure was identified. Then, the ratio of loss of each apple relative to the whole apple was calculated and compared with the number obtained from the desired region method, which was accurate. In this study, three major diseases of apples were studied, and an algorithm was written to distinguish these three types of infections from healthy apples. The results showed that the proposed method had the necessary efficiency to calculate the volume and percentage of failure and diagnose the type of apple diseases. In addition, the system's accuracy compared to previous studies increased by up to 95%.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button