مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

1,555
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

PLIABLE CONVERTIBLE STRUCTURES IN ARCHITECTURE INSPIRED BY NATURAL ROLE MODELS

Pages

  67-80

Abstract

 generally an important part of changes in architectural constructions are represented by convertible structures. These kinds of structures are composed typically of hard or soft materials or combination of both, which avoid independent structural deformations and need additional elements such as hinges, rollers or other similar components. Development of new construction materials like Fiber-Reinforced Plastic (FRP) provides new opportunities for application of pliable elements in new convertible structures. Deformation of these pliable elements is an active bending one. It means bending of these structures is influenced by residual stress in their load bearing capacity and behavior. In comparison to the traditional convertible structures, the application of these new materials deforms the structures with less or even no hinge or other additional elements. Other important advantages of these structures are: reversibility, simplicity and lightness. The novelty of these structures has caused some uncertainties and questions that should be solved through new research projects. The most important questions are related to the material properties, appropriate deformation mechanisms and shape variation capabilities of these PLIABLE CONVERTIBLE STRUCTURES. This paper represents a bionics approach for design of some new deformation mechanisms inspired by natural role models for these structures. Due to limited information about pliable structures, the first part of the paper introduces a background and basic information about these structures. Then the main reasons for development of PLIABLE CONVERTIBLE STRUCTURES will be represented. At the beginning of the main part of the paper the process sequences in BIOMIMETIC research (Bottom-up and TOP-DOWN PROCESS) are described. The technical problem about deformation mechanism of PLIABLE CONVERTIBLE STRUCTURES and its boundary conditions are defined at the first step of TOP-DOWN PROCESS sequence. In the second step seventh of best biological role models from our screening process between plants and animals in macro and micro scale are rendered. Two body deformations of the most promising biological role models are selected in the third step. Jellyfish and snapdragon (Antirrhinum majus) are the selected ones. Each one of these natural examples has particular mechanism principle for body deformation. Jellyfish moves through the water by radially expanding and contracting their umbrella. Muscles are used for the contraction of the body and expansion is by an elastic part of their body (mesoglea) which releases the energy stored from the contraction. But deformation of snapdragon caused by an external pressure. The bottom petal of snapdragon bends down by the pressure on both sides of it. This is caused by curved-line folding of this petal. In the fourth step of TOP-DOWN PROCESS the biological mechanisms are abstracted by two different methods. Body deformation mechanism of jellyfish is abstracted by GEOMETRICAL MODELS (abstract formal patterns) and petal deformation mechanism of snapdragon is abstracted by PHYSICAL MODELS (folded paper models). Abstracted biological principles with minor modification are applied in two architectural examples for PLIABLE CONVERTIBLE STRUCTURES in the final step. The technical prototyping, optimization, potential for implementation and industrial development are issues that need specialized research and practical examination and can be followed in the future trends.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    MATINI, MOHAMMAD REZA. (2015). PLIABLE CONVERTIBLE STRUCTURES IN ARCHITECTURE INSPIRED BY NATURAL ROLE MODELS. MEMARI-VA-SHAHRSAZI (HONAR-HA-YE-ZIBA ), 20(1), 67-80. SID. https://sid.ir/paper/154435/en

    Vancouver: Copy

    MATINI MOHAMMAD REZA. PLIABLE CONVERTIBLE STRUCTURES IN ARCHITECTURE INSPIRED BY NATURAL ROLE MODELS. MEMARI-VA-SHAHRSAZI (HONAR-HA-YE-ZIBA )[Internet]. 2015;20(1):67-80. Available from: https://sid.ir/paper/154435/en

    IEEE: Copy

    MOHAMMAD REZA MATINI, “PLIABLE CONVERTIBLE STRUCTURES IN ARCHITECTURE INSPIRED BY NATURAL ROLE MODELS,” MEMARI-VA-SHAHRSAZI (HONAR-HA-YE-ZIBA ), vol. 20, no. 1, pp. 67–80, 2015, [Online]. Available: https://sid.ir/paper/154435/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops

  • No record.





  • Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button