مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

517
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

388
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

MAIZE RESPONSE TO WATER, SALINITY AND NITROGEN LEVELS: PHYSIOLOGICAL GROWTH PARAMETERS AND GAS EXCHANGE

Pages

  131-162

Abstract

 A split-split-plot design with three replications in two years of 2009 and 2010 was conducted to investigate the effect of different levels of irrigation WATER (main plot), salinity of irrigation WATER (sub-plot) and nitrogen fertilizer rate (sub-sub-plot) on MAIZE growth rate and GAS EXCHANGE. Irrigation treatments were I1 (1.0 crop evapotranspiration (ETc)+0.25ETc as leaching), I2 (0.75I1) and I3 (0.5I1) applied at 7-day intervals. The salinity treatments of irrigation were 0.6 (fresh WATER), 2.0 and 4.0 dS m-1. There were also three nitrogen (N) treatments including 0, 150 and 300 kg N ha-1. Results showed that vegetative growth stage of MAIZE in salinity stress lasted 5% more than that in WATER stress. The most sensitive trait under WATER, SALINITY AND NITROGEN STRESS was grain yield (GY). The optimum treatment for MAIZE production is full fresh WATER application by 150 kg N ha-1. Results also showed that crop growth rate (CGR) was statistically higher in I1 and I2 as 58 and 34% relative to I3 treatment, respectively. Furthermore, CGR was statistically lower in S2 and S3 as 10 and 18% relative to S1, respectively. Besides, N application significantly increased CGR by an average of 15% as compared with no N rate. The net assimilation rate (NAR) reached its maximum value in I2, S2 and N2 relative to other treatments indicating that NAR did not necessarily occurred at maximum LAI conditions. In general, MAIZE had statistically greater NAR in pollination and filling stages relative to other growth stages. Results of GAS EXCHANGE for MAIZE as a sensitive crop to WATER deficit, showed that photosynthesis rate (An) and stomatal conductance (gs) were statistically decreased in WATER deficit by an average of 30 and 43% as compared to full irrigation treatment, respectively. However, reduction in An and gs in salinity conditions was the same as 13% compared to no salinity treatment. Transpiration rate (T) was statistically lower under WATER and salinity stress by an average of 75 and 26% as compared to no WATER and salinity stress, respectively. The ratio of An/gs in I2 and I3 was statistically higher as 23% than that obtained in I1 treatment indicating that maximum amount of intrinsic WATER use efficiency could be achieved by WATER saving strategies. This result confirmed by transpiration efficiency (An/T) which was statistically higher as 40 and 14% in I3 and S3 relative to full and fresh WATER irrigation treatment, respectively. In general, there was a decreasing trend in An and gs toward the end of growing season, mainly due to leaves ageing. Similar pattern also occurred in measurements during a day from morning to afternoon. Furthermore, An and gs decreased as vapor pressure deficit (VPD) increased. The relationships between An and gs vs VPD in different growth stages implied that the plant ability to regulate An and gs in response to VPD at leaf level declined in the last growth stages. This indicated that the WATER saving strategies during last growth stage for MAIZE is more desirable.

Cites

  • No record.
  • References

    Cite

    APA: Copy

    AZIZIAN, A., & SEPASKHAH, A.R.. (2014). MAIZE RESPONSE TO WATER, SALINITY AND NITROGEN LEVELS: PHYSIOLOGICAL GROWTH PARAMETERS AND GAS EXCHANGE. INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 8(1), 131-162. SID. https://sid.ir/paper/314712/en

    Vancouver: Copy

    AZIZIAN A., SEPASKHAH A.R.. MAIZE RESPONSE TO WATER, SALINITY AND NITROGEN LEVELS: PHYSIOLOGICAL GROWTH PARAMETERS AND GAS EXCHANGE. INTERNATIONAL JOURNAL OF PLANT PRODUCTION[Internet]. 2014;8(1):131-162. Available from: https://sid.ir/paper/314712/en

    IEEE: Copy

    A. AZIZIAN, and A.R. SEPASKHAH, “MAIZE RESPONSE TO WATER, SALINITY AND NITROGEN LEVELS: PHYSIOLOGICAL GROWTH PARAMETERS AND GAS EXCHANGE,” INTERNATIONAL JOURNAL OF PLANT PRODUCTION, vol. 8, no. 1, pp. 131–162, 2014, [Online]. Available: https://sid.ir/paper/314712/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button