مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

335
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

196
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

CONFIDENCE MEASURE ESTIMATION FOR OPEN INFORMATION EXTRACTION

Pages

  1-8

Abstract

 The prior RELATION EXTRACTION approaches were relation-specific and supervised, yielding new instances of relations known a priori. While effective, this model is not applicable in case when the number of relations is high or where the relations are not known a priori. Open INFORMATION EXTRACTION (OIE) is a relation-independent extraction paradigm designed to extract relations directly from massive and heterogeneous corpora such as Web. One of the main challenges for an Open IE system is estimating the probability that its extracted relation is correct. A confidence measure shows that how an extracted relation is a correct instance of a relation among entities. This paper proposes a new method of confidence estimation for OIE called Relation Confidence Estimator for Open INFORMATION EXTRACTION (RCE-OIE). It investigates the incorporation of some proposed features in assigning confidence metric using logistic regression. These features consider diverse lexical, syntactic and semantic knowledge and also some extraction properties such as number of distinct documents from which extractions are drawn, number of relation arguments and their types. We implemented proposed confidence measure on the Open IE systems’ extractions and examined how it affects the performance of results. Evaluations show that incorporation of designed features is promising and the accuracy of our method is higher than the base methods while keeping almost the same performance as them. We also demonstrate how semantic information such as coherence measures can be used in feature-based confidence estimation of Open RELATION EXTRACTION (ORE) to further improve the performance.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    RESHADAT, VAHIDEH, HOURALI, MARYAM, & FAILI, HESHAAM. (2018). CONFIDENCE MEASURE ESTIMATION FOR OPEN INFORMATION EXTRACTION. JOURNAL OF INFORMATION SYSTEMS AND TELECOMMUNICATION (JIST), 6(1), 1-8. SID. https://sid.ir/paper/332720/en

    Vancouver: Copy

    RESHADAT VAHIDEH, HOURALI MARYAM, FAILI HESHAAM. CONFIDENCE MEASURE ESTIMATION FOR OPEN INFORMATION EXTRACTION. JOURNAL OF INFORMATION SYSTEMS AND TELECOMMUNICATION (JIST)[Internet]. 2018;6(1):1-8. Available from: https://sid.ir/paper/332720/en

    IEEE: Copy

    VAHIDEH RESHADAT, MARYAM HOURALI, and HESHAAM FAILI, “CONFIDENCE MEASURE ESTIMATION FOR OPEN INFORMATION EXTRACTION,” JOURNAL OF INFORMATION SYSTEMS AND TELECOMMUNICATION (JIST), vol. 6, no. 1, pp. 1–8, 2018, [Online]. Available: https://sid.ir/paper/332720/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button