مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

438
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

434
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

1

Information Journal Paper

Title

PREDICTION OF THE LIQUID VAPOR PRESSURE USING THE ARTIFICIAL NEURAL NETWORK-GROUP CONTRIBUTION METHOD

Pages

  97-111

Abstract

 In this paper, vapor pressure for pure compounds is estimated using the ARTIFICIAL NEURAL NETWORKs and a simple GROUP CONTRIBUTION METHOD (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Vapor pressure data were taken from literature for wide ranges of temperature (68.55-559.15 K). Based on results, the best structure for feed-forward back propagation neural network is Levenberg-Marquardt back propagation training algorithm, logsig transfer function for hidden layer and linear transfer function for output layer. The multiplayer network model consists of temperature, acentric factor, critical temperature, critical pressure and the structure of molecules as inputs, 10 neurons in the hidden layer and one neuron in the output layer corresponding to vapor pressure. The weights are optimized to minimize error between experimental and calculated data. Results show that optimum neural network architecture is able to predict vapor pressure data with an acceptable level. The trained network predicts the vapor pressure data with average relative deviation percent of 1.18%.

Cites

References

Cite

APA: Copy

TARJOMANNEJAD, ALI. (2015). PREDICTION OF THE LIQUID VAPOR PRESSURE USING THE ARTIFICIAL NEURAL NETWORK-GROUP CONTRIBUTION METHOD. IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE), 34(4), 97-111. SID. https://sid.ir/paper/662565/en

Vancouver: Copy

TARJOMANNEJAD ALI. PREDICTION OF THE LIQUID VAPOR PRESSURE USING THE ARTIFICIAL NEURAL NETWORK-GROUP CONTRIBUTION METHOD. IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE)[Internet]. 2015;34(4):97-111. Available from: https://sid.ir/paper/662565/en

IEEE: Copy

ALI TARJOMANNEJAD, “PREDICTION OF THE LIQUID VAPOR PRESSURE USING THE ARTIFICIAL NEURAL NETWORK-GROUP CONTRIBUTION METHOD,” IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE), vol. 34, no. 4, pp. 97–111, 2015, [Online]. Available: https://sid.ir/paper/662565/en

Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button