مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

163
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

121
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models

Pages

  92-100

Abstract

 Background: The outbreak of COVID-19 is rapidly spreading around the world and became a pandemic disease. For help to better planning of interventions, this study was conducted to Forecast the number of daily new infected cases with COVID-19 for next thirty days in Iran. Methods: The information of observed Iranian new cases from 19th Feb to 30th Mar 2020 was used to predict the number of patients until 29 th Apr. Artificial neural networks (ANN) and Auto-Regressive Integrated Moving Average (ARIMA) models were applied for prediction. The data was prepared from daily reports of Iran Ministry of Health and open datasets provided by the JOHN Hopkins. To compare models, dataset was separated into train and test sets. Mean Squared Error (MSE) and Mean Absolute Error (MAE) was the comparison criteria. Results: Both algorithms Forecasted an exponential increase in number of newly infected patients. If the spreading pattern continues the same as before, the number of daily new cases would be 7872 and 9558 by 29 th Apr, respectively by ANN and ARIMA. While Model comparison confirmed that ARIMA prediction was more accurate than ANN. Conclusion: COVID-19 is contagious disease, and has infected many people in Iran. Our results are an alarm for health policy planners and decision-makers, to make timely decisions, control the disease and provide the equipment needed.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Moftakhar, Leila, Seif, Mozhgan, & SAFE, Marziyeh Sadat. (2020). Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models. IRANIAN JOURNAL OF PUBLIC HEALTH, 49(SUPPLEMENT 1), 92-100. SID. https://sid.ir/paper/754975/en

    Vancouver: Copy

    Moftakhar Leila, Seif Mozhgan, SAFE Marziyeh Sadat. Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models. IRANIAN JOURNAL OF PUBLIC HEALTH[Internet]. 2020;49(SUPPLEMENT 1):92-100. Available from: https://sid.ir/paper/754975/en

    IEEE: Copy

    Leila Moftakhar, Mozhgan Seif, and Marziyeh Sadat SAFE, “Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models,” IRANIAN JOURNAL OF PUBLIC HEALTH, vol. 49, no. SUPPLEMENT 1, pp. 92–100, 2020, [Online]. Available: https://sid.ir/paper/754975/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button