فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی







متن کامل


عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    42
  • شماره: 

    2
  • صفحات: 

    386-397
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    94
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 94

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    4
  • شماره: 

    10
  • صفحات: 

    56-69
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    79
  • دانلود: 

    6
چکیده: 

با افزایش تمایل شرکت ها و سازمان ها، برای بکارگیری کارآموزان در موقعیت های مختلف، انتخاب فرد مناسب برای مشارکت در دوره های کارآموزی اهمیت بسیاری پیدا کرده است. کسی که برای کارآموزی انتخاب می شود اگرچه باید در زمینه های کاری موردنظر، دانش و مهارت نسبی داشته باشد؛ اما نباید متخصص و باتجربه باشد؛ زیرا این‏گونه افراد معمولاً دستمزد بالایی طلب می کنند. وب سایت های پرس وجوی انجمنی با کاربران فراوانی که دارند، می توانند به عنوان یکی از منابع شناخت کارآموز مورداستفاده قرار گیرند. در پژوهش‏های پیشین برای شناخت کارآموزان بالقوه ویژگی‏های آماری مانند تعداد پاسخ، تعداد حوزه‏های تخصصی، طول پاسخ‏ها و موارد مشابه پیشنهاد شده است؛ اما محتوای پاسخ‏های کاربر تاکنون برای شناخت کارآموزان استفاده نشده است. این محتوای متنی منبعی غنی برای تشخیص گستردگی یا عمق دانش کاربر است و می‏تواند کمک شایانی به شناخت کارآموزان بالقوه کند. در این پژوهش یک مدل یادگیری عمیق با نام CNN-BiLSTM برای تشخیص افراد مناسب برای کارآموزی براساس متن پاسخ‏هایی که در وب سایت های پرس وجوی انجمنی ارسال می‏کنند، پیشنهاد شده است. علاوه براین، از سه مدل یادگیری ماشین و چهار مدل پرکاربرد یادگیری عمیق نیز برای مقایسه استفاده شده است. بر اساس نتایج به دست آمده مدل های یادگیری عمیق در مقایسه با الگوریتم های یادگیری ماشین براساس معیار صحت و F1 عملکرد بهتری داشته اند. همچنین در بین مدل های یادگیری عمیق، مدل پیشنهادی توانسته حداقل به صورت متوسط 7% صحت بالاتر و 2% معیار F1 بالاتری نسبت به سایر مدل های مورداستفاده برای شناسایی کارآموزان بالقوه نشان دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 79

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 6 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    20
  • شماره: 

    4
  • صفحات: 

    126-133
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    8
  • دانلود: 

    0
چکیده: 

Tuberculosis (TB) is a dangerous disease caused by mycobacterium leads to mortality. Early detection and identification of tuberculosis is crucial for managing tuberculosis infections. Recent technological improvements use a machine learning-based SVM and Modified CNN to identify specific diseases more accurately, as demonstrated in this research. The modified CNN's improved feature extraction and classification accuracy are maintained throughout construction. To obtain good performance a TBX11K publicly accessible dataset is used it consists of 11000 images of which 4600 chest x-ray (CXR) images are considered in this research, and the suggested model is verified. This approach significantly increases the accuracy of categorizing TB symptoms.  The PCA in this system locates the elements and extracts a large amount of variance technique applied to the full chest radiograph for pulmonary tuberculosis identification accuracy using SVM is 93.14% and modified CNN 96.72% respectively. When it comes to helping radiologists diagnose patients and public health professionals screen for tuberculosis in places where the disease is endemic, the proposed system SVM and modified CNN perform better than existing methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    10
تعامل: 
  • بازدید: 

    122
  • دانلود: 

    43
چکیده: 

با توجه به اتکای روزافزون زیرساخت های حیاتی به فناوری اطلاعات و ارتباطات، تشخیص و پیشگیری به موقع از حملات بسیار مهم شده است. تحقیقات گسترده ای در زمینه شبکه های عصبی و یادگیری عمیق به دلیل سازگاری با مجموعه داده های بزرگ به این حوزه اختصاص یافته است. مطالعات قبلی نشان داده اند که ترکیب الگوریتم های شبکه عصبی، به ویژه شبکه عصبی کانولوشنال و حافظه کوتاه مدت، به طور قابل توجهی پیش بینی حمله را در مقایسه با مدل های CNN یا LSTM به طور جداگانه بهبود می بخشد. این مطالعه یک مدل موازی جدید را معرفی می کند که این دو شبکه را ادغام می کند. شبکه های موازی دو ورودی را به طور همزمان دریافت می کنند، یکی برای پردازش متوالی توسط شبکه عصبی CNN و دیگری برای پردازش توسط شبکه LSTM. هر مدل به طور مستقل داده ها را پردازش می کند و خروجی های آنها برای تولید نتیجه نهایی ادغام می شوند. ادغام مدل های CNN و LSTM به طور موازی، که ویژگی های منحصربه فرد و ویژگی های زمانی را از داده های ورودی از طریق لایه های کانولوشنی و بازگشتی به طور همزمان استخراج می کنند، به دقت بالاتری نسبت به مطالعات قبلی دست یافتند. با استفاده از مجموعه داده معروف NSL_KDD، مدل پیشنهادی در این مطالعه به دقت 99. 45 درصد در تشخیص حملات Denial of Service دست یافت که از مطالعات قبلی بر روی همان مجموعه داده که حداکثر دقت 99. 20 درصد را به دست آورد، پیشی گرفت.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 122

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 43
نویسنده: 

SALEHI MARYAM | YARI ALIREZA

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

Given the increasing reliance of critical infrastructure on information and communication technology, the timely detection and prevention of attacks have become paramount. Extensive research in field of neural networks and deep learning being used due to the being compatible on large datasets has been devoted to this area. Previous studies have shown that combining neural network algorithms, particularly the Convolutional Neural Network and long short-term memory, significantly improve attack prediction compared to either CNN or LSTM models individually. This study introduces a novel parallel model that integrates these two networks. The parallel networks receive two inputs simultaneously, one for sequential processing by the CNN neural network and the other for processing by the LSTM network. Each model processes the data independently, and their outputs are merged to produce the final result. The integration of CNN and LSTM models in parallel, which extract unique features and temporal characteristics from input data through convolutional and recursive layers at the same time, achieved higher accuracy than previous studies. By utilizing the well-known NSL_KDD dataset, the proposed model in this study achieved an accuracy of 99. 45% in detecting Denial of Service attacks, surpassing previous studies on the same dataset that achieved a maximum accuracy of 99. 20%.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    16
  • شماره: 

    4
  • صفحات: 

    64-78
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

The term "clickbait" refers to content specifically designed to capture readers' attention, often through misleading headlines, leading to frustration among social media users. In this study, titled "Mushakkal," which translates to "variety" in Arabic, we utilized a Convolutional Neural Network (CNN)—a deep learning approach—to detect clickbait within an Arabic dataset. We compared three optimizers: RMSprop, Adam, and Adadelta, evaluating various parameter settings to determine the most effective combination for detecting clickbait in Arabic content. Our findings revealed that the CNN model performed best when both pre-processing and Word2Vec techniques were applied. The Adam optimizer outperformed the others, achieving a Macro-F1 score of 77%. The RMSprop optimizer closely followed, attaining a Macro-F1 score of 76%. In contrast, Adadelta proved to be the least effective for classifying Arabic text.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    14
  • شماره: 

    supplement 1
  • صفحات: 

    114-123
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    149
  • دانلود: 

    0
چکیده: 

Detecting occluded faces is a non-trivial problem for face detection in computer vision. This challenge becomes more difficult when the occlusion covers majority of the face. Despite the high performance of current state-of-the-art face detection algorithms, the detection of occluded and covered faces is an unsolved problem and is still worthy of study. In this paper, a deep-learning-face-detection model Niqab-Face-Detector is proposed along with context-based labeling technique for detecting unconstrained veiled faces such as faces covered with niqab. An experimental test was conducted to evaluate the performances of the proposed model using the Niqab-Face dataset. The experiment showed encouraging results and improved accuracy compared with state-of-the-art face detection algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 149

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Naren Thiruvalar V. | Vimal E.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    12
  • شماره: 

    Special Issue
  • صفحات: 

    1835-1843
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    32
  • دانلود: 

    0
چکیده: 

The main objective of this project is to detect driver’s drowsiness and alert the driver which is an important precautionary measure in order to avoid accidents. Here two different algorithms based on Convolution Neural Network (CNN) were applied and the results were compared respectively. “Highway Hypnosis” is a serious issue to be addressed while driving especially on highways. Drivers who travel on highways continuously for more than 3 hours must be aware of this serious problem. If there is proper knowledge of it, fatalities would be drastically reduced. In this project, a dedicated detection coupled with an alarm system is provided to alert the driver in case of drowsiness. CNN is used since it is very effective in analyzing images and videos. In this project, a live video feed is used to detect drowsiness by suitable algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 32

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    10
تعامل: 
  • بازدید: 

    70
  • دانلود: 

    26
چکیده: 

تحقیقات انجام شده نشان می دهد که افراد حدود 70 تا 90 درصد از زمان زندگی و کار خود را در محیط های بسته می گذرانند. بنابراین، به نظر می رسد ارائه سیستم هایی که خدمات کافی را به کاربران در این محیط ها ارائه می دهند، ضروری است. موقعیت یابی کاربران و دستگاه ها در حوزه های مراقبت های بهداشتی، صنعت، مدیریت ساختمان، نظارت تصویری و سایر بخش ها کاربرد گسترده ای دارد. برای سیستم های موقعیت یابی داخلی، فناوری های مختلفی وجود دارد. در این مقاله، به دلیل دقت بالای آن در موقعیت یابی داخلی، فناوری فراپهن باند در نظر گرفته شده است. با این حال، در محیط های داخلی اشیاء و افراد زیادی وجود دارند، بنابراین موانع می توانند سیگنال های ارسال شده را منعکس کنند. در مقایسه با سیگنال خط دید، تأخیر مسیر انتقال سیگنال در سیگنال غیر خط دید منجر به خطاهای مثبت برد می شود. برای کاهش تأثیر شرایط NLoS بر موقعیت یابی، در این پژوهش تلاش کرده ایم تا با ارائه شبکه های یادگیری عمیق و استفاده از داده های پاسخ ضربه کانال به عنوان ورودی بدون دانش قبلی از محیط، جداسازی با دقت بالا برای شرایط LoS و NLoS را به دست آوریم. علاوه بر این، نتایج این طبقه بندی با سایر مراجعی که از مجموعه داده مشابه استفاده کرده اند مقایسه می شود. نتایج بخش طبقه بندی سیگنال NLoS/LoS نشان می دهد که شبکه های عصبی کانولوشنال پیشنهادی بهتر از سایر روش های شبکه عصبی (مانند شبکه های عصبی عمیق) عمل می کنند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 70

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 26
نویسندگان: 

Muis A. | Sunardi S. | Yudhana A.

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    37
  • شماره: 

    5
  • صفحات: 

    984-996
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    3
  • دانلود: 

    0
چکیده: 

Brain tumors are one of the deadliest diseases in the world. This disease can attack anyone regardless of gender or certain age groups. The diagnosis of brain tumors is carried out by manually identifying images resulting from Computerized Tomography Scan or Magnetic Resonance Imaging, making it possible for diagnostic errors to occur. In addition, diagnosis can be made using biopsy techniques. This technique is very accurate but takes a long time, around 10 to 15 days and involves a lot of equipment and medical personnel. Based on this, machine learning technology is needed which can classify based on images produced from MRI. This research aims to increase the accuracy of previous research in the classification of brain tumors so that errors do not occur in the diagnosis of brain tumors. The method used in this research is Convolutional Neural Network using the AlexNet and Google Net architectures. The results of this research obtained an accuracy of 98% for the AlexNet architecture and 96% for GoogleNet. This result is higher when compared with previous research. This finding can reduce the computational burden during model training. The results of this research can help physicians diagnose brain tumors quickly and accurately.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button