فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی




متن کامل


نویسندگان: 

VASOU JOUYBARI M. | Ataie E. | Bastam M.

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    195-204
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    247
  • دانلود: 

    83
چکیده: 

Distributed Denial of Service (DDOS) attacks are among the primary concerns in internet security today. Machine learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using deep machine learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDOS2019 dataset. To remove irrelevant and redundant data from the dataset and increase learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 247

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 83 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    3
  • شماره: 

    2
  • صفحات: 

    83-93
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    324
  • دانلود: 

    0
چکیده: 

Recently, Peer-to-Peer (P2P) networks contribute to a large fraction of the Internet backbone traffic. Consequently, misusing such networks for malicious purposes is a potential side effect. In this review article, we investigate different techniques of misusing P2P overlay networks to launch large-scale next-generation Distributed Denial of Service (DDOS) attacks. In particular, we investigate representative systems of the structured (Overnet), unstructured (Gnutella) and hybrid (BitTorrent) P2P overlay networks. Real world experiments indicate the high performance, difficulty in detection and tracking, and the low cost of launching such attacks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 324

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    2
  • شماره: 

    6
  • صفحات: 

    43-55
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    351
  • دانلود: 

    179
چکیده: 

حمله انکار سرویس توزیع شده (DDOS) تلاشی است که باعث می شود منابع شبکه برای کاربران قانونی در دسترس نباشد. امروزه، تعداد حملات DDOS به سرعت افزایش یافته اند و این تهدیدی برای کاربران اینترنت است، شبکه های پلیس نیز از این تهدید مستثنا نیستند و با توجه به نیاز دایمی پاسخگو بودن این شبکه ها در برابر درخواستهای قانونی از حساسیت بیشتری برخوردارند. اگرچه هدف حملات DDOS ممکن است متفاوت باشد، اما به طور کلی سعی می شود خدمات یک سرور قربانی متصل به اینترنت را به طور موقت یا دایم از دسترس خارج کند. در این مقاله، یک روش مبتنی بر لایه شبکه و مستقل از پروتکل های ارتباطی ارایه شده است که قادر است رفتارهای حمله را بدون نیاز به دانستن رفتارهای عادی شبکه تشخیص دهد. علاوه بر این، در این روش نیازی به ذخیره حجم بالای پروفایل ها، لیست های متعدد و امضاهای حمله نیست. این روش در سه مرحله صورت می گیرد: استخراج ویژگی از طریق موجک دو بعدی که نمودار توزیع انرژی را فراهم می کند، تشخیص نقطه تغییر با کمک قوانین منطق فازی و تجزیه و تحلیل شبکه عصبی عمیق به عنوان مرحله نهایی تشخیص. روش پیشنهادی در مجموعه داده های VAST و ISCX اجرا شد که در آن قادر به شناسایی حملات DDOS طی 10 ثانیه با دقت %99. 99 برای دادگانVAST و دقت %99. 08 برای ISCX بود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 351

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 179 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    8
تعامل: 
  • بازدید: 

    99
  • دانلود: 

    0
چکیده: 

With the rapid growth of computer devices, network communication faced different challenges from network management to traffic engineering. Software-Defined Networking (SDN) is a well-known solution for optimizing these communications. SDN is a new networking architecture to simplify network management that separates the control plane from the data plane. The central controller is the major advantage of SDN; however, it has security vulnerabilities such as being unreachable in Distributed Denial-of-Service attacks (DDOS). Consequently, it is very important to protect SDN from DDOS attacks. In this paper, we proposed an algorithm for DDOS attack detection and reducing its impact in SDN architecture with multiple distributed controllers. We presented two methods 1) the entropy of destination IP addresses and 2) Packet window initiation rate for early detection of DDOS. We used Mininet and floodlight to simulate our algorithm in different scenarios. The result shows that our algorithm outperforms other works in various network configurations and multi-victim attacks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 99

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    1
تعامل: 
  • بازدید: 

    1569
  • دانلود: 

    1323
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1569

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 1323
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    1
تعامل: 
  • بازدید: 

    360
  • دانلود: 

    272
کلیدواژه: 
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 360

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 272
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    15
  • شماره: 

    1
  • صفحات: 

    1-8
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    289
  • دانلود: 

    0
چکیده: 

DDOS (Distributed Denial-of-Service) attacks are among the cyberattacks that are increasing day by day and have caused problems for computer network servers. With the advent of SDN networks, they are not immune to these attacks, and due to the software-centric nature of these networks, this type of attack can be much more difficult for them, ignoring effective parameters such as port and Source IP in detecting attacks, providing costly solutions which are effective in increasing CPU load, and low accuracy in detecting attacks are of the problems of previously presented methods in detecting DDOS attacks. Given the importance of this issue, the purpose of this paper is to increase the accuracy of DDOS attack detection using the second order correlation coefficient technique based on ∅-entropy according to source IP and selection of optimal features. To select the best features, by examining the types of feature selection algorithms and search methods, the WrapperSubsetEval feature selection algorithm, the BestFirst search method, and the best effective features were selected. This study was performed on CTU-13 and ISOT datasets and the results were compared with other methods. The accuracy of the detection in this work indicates the high efficiency of the proposed approach compared to other similar methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 289

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Songa Asha Varma | Karri Ganesh Redy

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    17
  • شماره: 

    4
  • صفحات: 

    31-44
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    47
  • دانلود: 

    0
چکیده: 

The advent of cloud computing has made it simpler for users to gain access to data regardless of their physical location. It works for as long as they have access to the internet through an approach where the users pay based on how they use these resources in a model referred to as “pay-as-per-usage”. Despite all these advantages, cloud computing has its shortcomings. The biggest concern today is the security risks associated with the cloud. One of the biggest problems that might arise with cloud services availability is Distributed Denial of Service attacks (DDOS). DDOS attacks work by multiple machines attacking the user by sending packets with large data overhead. Therefore, the network is overwhelmed with unwanted traffic. This paper proposes an intrusion detection framework using Ensemble feature selection with RNN (ERNN) to tackle the problem at hand. It combines an Ensemble of multiple Machine Learning (ML) algorithms with a Recurrent Neural Network (RNN).  The framework aims to address the issue by selecting the most relevant features using the ensemble of six ML algorithms. These selected features are then used to classify the network traffic as either normal or attack, employing RNN. The effectiveness of the proposed model is evaluated using the CICDDOS2019 dataset, which contains new types of attacks. To assess the performance of the model, metrics like precision, accuracy, F-1 score, and recall are taken into consideration.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 47

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Valizadeh Parisa | Taghinezhad Niar Ahmad

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    1-7
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    102
  • دانلود: 

    0
چکیده: 

Network communication shows a variety of issues with the fast expansion of computer devices, ranging from network administration to traffic engineering. A well-known method for improving these connections is Software-Defined Networking (SDN). The SDN is a networking architecture that separates the control plane from the data plane to ease network administration. The main advantage of the SDN is the central controller. However, it has security flaws like unreachability in Distributed Denial-of-Service attacks (DDOS). Hence, defending SDN against DDOS attacks is critical. We proposed a framework for detecting DDOS attacks and a fault-tolerant method to replace faulty leader controller in distributed multi-controller SDN. We used multi-controllers architecture and leader election algorithm to present a fault-tolerant framework to select a new leader controller, in the case of a leader controller failure. In addition, an early DDOS attack detection algorithm using the entropy of destination IP addresses and the packet window initiation rate is presented. To evaluate our proposed method in various configurations, we simulated exhaustive experiments in Mininet and Floodlight. The results show that our approach outperforms similar algorithms in various network configurations and multi-victim attacks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 102

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
تعامل: 
  • بازدید: 

    56
  • دانلود: 

    0
چکیده: 

Denial-of-service attacks are always one of the most widespread security attacks at the enterprise network level. In DDOS attacks, a large amount of false demand is intentionally sent to the target network to disable the service. In DDOS attacks, the target server faces many demands, not from a specific source, but from different locations of the attack, which makes detection and defense more difficult. With the introduction of network functions virtualization and Software-defined networking, a new route, for network design and management, has been created. The purpose of this research is to investigate and compare DDOS attack defense methods using NFV and SDN. The details provided will help researchers in this field familiarize themselves with DDOS attack defense methods and choose the appropriate design for their actual implementations.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 56

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button