فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

VASOU JOUYBARI M. | Ataie E. | Bastam M.

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    195-204
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    248
  • دانلود: 

    83
چکیده: 

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine Learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using Deep machine Learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase Learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 248

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 83 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    137
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    32
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 32

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    16
  • شماره: 

    2
  • صفحات: 

    25-33
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    9
  • دانلود: 

    0
چکیده: 

Web application (app) exploration is a crucial part of various analysis and testing techniques. However, the current methods are not able to properly explore the state space of web apps. As a result, techniques must be developed to guide the exploration in order to get acceptable functionality coverage for web apps. Reinforcement Learning (RL) is a machine Learning method in which the best way to do a task is learned through trial and error, with the help of positive or negative rewards, instead of direct supervision. Deep RL is a recent expansion of RL that makes use of neural networks’ Learning capabilities. This feature makes Deep RL suitable for exploring the complex state space of web apps. However, current methods provide fundamental RL. In this research, we offer DeepEx, a Deep RL-based exploration strategy for systematically exploring web apps. Empirically evaluated on seven open-source web apps, DeepEx demonstrated a 17% improvement in code coverage and a 16% enhancement in navigational diversity over the stateof-the-art RL-based method. Additionally, it showed a 19% increase in structural diversity. These results confirm the superiority of Deep RL over traditional RL methods in web app exploration.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 9

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

HEMMATI MOJTABA | HADAVI MOHAMMAD ALI

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    14
  • شماره: 

    2
  • صفحات: 

    131-145
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    123
  • دانلود: 

    0
چکیده: 

Web application rewalls (WAFs) are used for protecting web applications from attacks such as SQL injection, cross-site request forgery, and cross-site scripting. As a result of the growing complexity of web attacks, WAFs need to be tested and updated on a regular basis. There are various tools and techniques to verify the correct performance of a WAF. But most of the techniques are manual or use brute-force attacks, so su er from poor e cacy. In this work, we propose a solution based on Reinforcement Learning (RL) to discover malicious payloads, which are able to bypass WAFs. We provide an RL framework with an environment compatible with OpenAI gym toolset standards. The environment is employed for training agents to implement WAF circumvention tasks. The agent mutates the syntax of a malicious payload using a set of modi cation operators as actions, without changes to its semantic. Then, upon WAF's reaction to the payload, the environment ascertains a reward for the agent. Eventually, based on these rewards, the agent learns a suitable sequence of mutations for any malicious payload. The payloads, which bypass the WAF determine rules defects, which can be further used in rule tuning for rule-based WAFs. Also, it can enrich the machine Learning-based WAFs datasets for retraining. We use Q-Learning, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO) algorithms with the Deep neural network. Our solution is successful in evading signature-based and machine Learning-based WAFs. While our focus in this work is on SQL injection, the method can be simply extended to use for any string-based injection attacks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 123

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1404
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    0
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 0

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

فیاضی حسین | شکفته یاسر

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    93-125
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

In traditional speech processing, feature extraction and classification were conducted as separate steps. The advent of Deep neural networks has enabled methods that simultaneously model the relationship between acoustic and phonetic characteristics of speech while classifying it directly from the raw waveform. The first convolutional layer in these networks acts as a filter bank. To enhance interpretability and reduce the number of parameters, researchers have explored the use of parametric filters, with the SincNet architecture being a notable advancement. In SincNet's initial convolutional layer, rectangular bandpass filters are learned instead of fully trainable filters. This approach allows for modeling with fewer parameters, thereby improving the network's convergence speed and accuracy. Analyzing the learned filter bank also provides valuable insights into the model's performance. The reduction in parameters, along with increased accuracy and interpretability, has led to the adoption of various parametric filters and Deep architectures across diverse speech processing applications. This paper introduces different types of parametric filters and discusses their integration into various Deep architectures. Additionally, it examines the specific applications in speech processing where these filters have proven effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    18
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 18

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    15
  • شماره: 

    1
  • صفحات: 

    50-57
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1041
  • دانلود: 

    659
چکیده: 

مقدمه: یادگیری تقویتی عمیق با برنامه درسی (Curriculum Learning)، شیوه ای از آموزش عامل هوشمند است که ابتدا عمل های ساده و سپس عمل های سخت به عامل آموزش داده می شود تا عامل هوشمند بتواند عمل های پیچیده در فضای گسترده بازی را بهتر آموزش ببیند. مواد و روش ها: در مطالعه حاضر، از یادگیری تقویتی عمیق با برنامه درسی برای آموزش عامل هوشمند در فضای بازی غار اژدها استفاده شد . یافته ها: یافته ها حاکی از بهبود کیفیت عامل هوشمند با برنامه درسی نسبت به عامل هوشمند یادگیری تقویتی عمیق بدون برنامه درسی بود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1041

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 659 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    12
  • شماره: 

    2
  • صفحات: 

    2-11
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    133
  • دانلود: 

    21
چکیده: 

در این مقاله، برنامه ریزی بهره برداری ریزشبکه ها مشتمل بر منابع تولید انرژی و سیستم های ذخیره انرژی مبتنی بر یادگیری تقویتی عمیق ارائه شده است. با توجه به خاصیت پویایی مسئله، ابتدا در قالب یک فرایند تصمیم گیری مارکوف متشکل از چهارتایی (حالت، اقدام، تابع احتمال انتقال و پاداش) فرمول بندی شده است. سپس، الگوریتم گرادیان استراتژی قطعی عمیق به منظور یادگیری استراتژی بهینۀ برنامه ریزی بهره برداری ریزشبکه با هدف کمینه کردن هزینه های بهره برداری ارائه شده است. این الگوریتم یک روش بی نیاز از مدل، مستقل از استراتژی و بر مبنای معماری عامل-نقاد است که می تواند به خوبی فضای حالت و اقدام مسئله را به صورت پیوسته مدل سازی و بر چالش بزرگ بودن ابعاد مسئله غلبه کند. به منظور ارزیابی الگوریتم ارائه شده، نتایج با الگوریتم یادگیری Q عمیق و روش تحلیلی مقایسه شد. نتایج حاصل از شبیه سازی، کارایی الگوریتم گرادیان استراتژی قطعی عمیق ارائه شده را از جهت همگرایی، زمان اجرا و هزینۀ کل نشان دادند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 133

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 21 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Wankhede Yogesh | Rana Sheetal | Kazi Faruk

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    17
  • شماره: 

    3
  • صفحات: 

    165-179
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    39
  • دانلود: 

    0
چکیده: 

The hybrid electric train which operates without overhead wires or traditional power sources relies on hydrogen fuel cells and batteries for power. These fuel cell-based hybrid electric trains (FCHETs) are more efficient than those powered by diesel or electricity because they do not produce any tailpipe emissions making them an eco-friendly mode of transport. The target of this paper is to propose low-budget FCHETs that prioritize energy efficiency to reduce operating costs and minimize their impact on the environment. To this end, an energy management strategy [EMS] has been developed that optimizes the distribution of energy to reduce the amount of hydrogen required to power the train. The EMS achieves this by balancing battery charging and discharging. To enhance the performance of the EMS, proposes to use of a Deep Reinforcement Learning (DRL) algorithm specifically the Deep deterministic policy gradient (DDPG) combined with transfer Learning (TL) which can improve the system's efficiency when driving cycles are changed. DRL-based strategies are commonly used in energy management and they suffer from unstable convergence, slow Learning speed, and insufficient constraint capability. To address these limitations, an action masking technique to stop the DDPG-based approach from producing incorrect actions that go against the system's physical limits and prevent them from being generated is proposed. The DDPG+TL agent consumes up to 3. 9% less energy than conventional rule-based EMS while maintaining the battery's charge level within a predetermined range. The results show that DDPG+TL can sustain battery charge at minimal hydrogen consumption with minimal training time for the agent.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 39

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button