فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی






متن کامل


اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    1
  • شماره: 

    2
  • صفحات: 

    217-226
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    49
  • دانلود: 

    18
چکیده: 

پیشینه و اهداف: برنج به عنوان یک محصول استراتژیک در زمینه امنیت غذایی نه تنها در اقتصاد کلان جوامع بلکه در جایگاه جهانی نیز جایگاه ویژه ای دارد. اهمیت این محصول در تأمین نیازهای غذایی جمعیت و نقش آن در تحقق امنیت غذایی، اهمیت جدی و چشم گیری به آن اختصاص داده است. در این راستا، جمع آوری دقیق و به روز اطلاعات از وضعیت مزارع برنج، به ویژه اطلاعات مرتبط با کمیت و کیفیت محصولات، امری بسیار حیاتی و اساسی است. استفاده از تکنولوژی های سنجش از دور در این زمینه به عنوان یک راهکار کارآمد و موثر مطرح شده است. این تکنولوژی ها امکان جمع آوری اطلاعات پایشی از مزارع را با کمترین هزینه و در مناطق گسترده تر فراهم می آورند. از جمله این تکنولوژی ها، پهپادها به خاطر توانایی بهتر در تفکیک مکانی و دقت بالاتر در انجام پایش های مختلف نسبت به ماهواره ها، از مزایای نسبی برخوردارند. تحقیق حاضر از یک رویکرد پیشرفته به نام یادگیری عمیق استفاده می نماید تا به منظور تخمین سطح زیر کشت برنج نشاء یا نهال از تصاویر RGB گرفته شده از پهپادها در منطقه ووفنگ استان تایچانگ کشور تایوان، اقدام نماید. این روش از توانمندی های شبکه های عصبی عمیق به عنوان یک ابزار موثر برای تحلیل داده های پیچیده بهره مند شده و به دقت بالایی در تفکیک انواع مختلف سطح زیر کشت نشاء یا نهال برنج دست یافته است.روش ها : در این تحقیق، از یکی از روش های پیشرفته یادگیری عمیق به نام DenseNet برای مدل سازی و پیش بینی سطح زیر کشت برنج نشاء یا نهال در تصاویر RGB گرفته شده از پهپادها استفاده شده است. این روش به وسیله الگوریتم های پیچیده و مجموعه ای از لایه های پردازشی، قابلیت استخراج مفاهیم انتزاعی سطح بالا را از داده ها دارد. یکی از ویژگی های منحصر به فرد DenseNet این است که از الگوریتم لایه به لایه (Layer-to-Layer) به جای رویکردهای سنتی که از ادغام لایه ها (layer concatenation) استفاده می کنند، بهره می برد. در این الگوریتم، هر لایه مستقل از سایر لایه ها کار می کند و به لایه های قبلی متصل می شود، که باعث کاهش تعداد وزن ها و پارامترها و همچنین افزایش کارایی شبکه می شود. استفاده از قابلیت یادگیری عمیق برای پردازش به هنگام داده ها به صورت فوری پس از اخذ تصاویر نشان دهنده ی قابلیت پویای DenseNet در پردازش اطلاعات به سرعت و با دقت بالا است. این امکان به ما این اجازه را می دهد که در زمان واقعی به تحلیل و پیش بینی سطح زیر کشت برنج نشاء یا نهال پرداخته و اطلاعات مورد نیاز برای اداره بهینه مزارع را بدست آوریم.یافته ها: نتایج به دست آمده از این تحقیق، تأییدگر دقت بسیار بالای 99.8 درصد را بر روی داده های اعتبارسنجی نشان می دهد. این درصد بسیار بالا نشان دهنده ی توانایی فوق العاده روش یادگیری عمیق DenseNet در تخمین دقیق سطح زیرکشت برنج نشاء یا نهال می باشد. این دقت بالا نه تنها نشان دهنده ی عملکرد بسیار خوب مدل در شناسایی و پیش بینی میزان کاشت برنج، بلکه اطمینان بخش بوده و به کاربران اعتماد می بخشد. مدل ارائه شده توانسته است با دقت بسیار بالا به تشخیص و ارزیابی سطح زیر کشت برنج نشاء یا نهال بپردازد. این امر در عمل به کشاورزان و مدیران مزارع ابزاری ارزشمند ارائه می دهد تا به صورت دقیق تر و سریع تر از وضعیت مزرعه خود آگاه شوند و تصمیم گیری های بهتری در مدیریت کشت و بهره وری انجام دهند.نتیجه گیری: در مجموع، این تحقیق نشان می دهد که استفاده از پهپادها به همراه روش های یادگیری عمیق، به منظور تخمین سطح زیرکشت برنج نشاء یا نهال با دقت بالا، در مناطقی چون ووفنگ استان تایچانگ تایوان، امکان پذیر است. این ارتقاء در تکنولوژی پایش می تواند به مدیران ذی ربط در امور کشاورزی و امنیت غذایی کمک زیادی کند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 49

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 18 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    10
  • شماره: 

    4
  • صفحات: 

    417-426
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    35
  • دانلود: 

    0
چکیده: 

Purpose: The mortality rate of fetuses due to heart defects is a major concern for clinicians. The fetus's heart is monitored non-invasively using the abdominal Electrocardiogram (ECG) of the mother. Most of the methods in literature diagnose fetal arrhythmia based on fetal heart rate. However, there are various challenges in fetal heart rate monitoring and arrhythmia detection. Therefore, very few methods are explored for fetal arrhythmia classification and have not achieved promising results. Materials and Methods: In this article, a fetal arrhythmia classification method is investigated. The method has exploited the transfer learning principle where DenseNet architecture is utilized to learn fetal ECG patterns. Fetal ECG (fECG) signal extracted from the mothers abdominal has been processed for denoising and heartbeats are segmented using signal processing techniques. The extracted heartbeats have transformed into 2D fECG images to re-train the pre-trained DenseNet architecture. Results: The proposed method has been evaluated on the publicly available Non-Invasive Fetal Arrhythmia Database (NIFADB) of Physionet and achieved 98. 56% classification accuracy, thus outperforming other existing methods. Conclusion: The arrhythmia in a fetus can be detected using a non-invasive fetal ECG. Due to the faster convergence of the learning algorithm, the proposed method offers better fetal diagnosis in real-time.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 35

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    7
تعامل: 
  • بازدید: 

    320
  • دانلود: 

    0
چکیده: 

These days deep learning methods play a pivotal role in complicated tasks, such as extracting useful features, segmentation, and semantic classification of images. These methods had significant effects on flower types classification during recent years. In this paper, we are trying to classify 102 flower species using a robust deep learning method. To this end, we used the transfer learning approach employing DenseNet121 architecture to categorize various species of oxford-102 flowers dataset. In this regard, we have tried to fine-tune our model to achieve higher accuracy respect to other methods. We performed preprocessing by normalizing and resizing of our images and then fed them to our fine-tuned pretrained model. We divided our dataset to three sets of train, validation, and test. We could achieve the accuracy of 98. 6% for 50 epochs which is better than other deep-learning based methods for the same dataset in the study.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 320

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    40
  • شماره: 

    700
  • صفحات: 

    1037-1043
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    204
  • دانلود: 

    37
چکیده: 

مقدمه: از تصاویر رادیوگرافی دست، به صورت رایج جهت ارزیابی بلوغ استخوانی استفاده می شود. به طوری که تفاوت چشمگیر میان سن ارزیابی شده و سن تقویمی می تواند نشان دهنده ی اختلال در رشد باشد. با این حال ارزیابی دستی تصاویر، معمولاً فرایندی زمان بر و وابسته به ناظر است. لذا هدف از انجام این مطالعه، ایجاد روشی خودکار برای ارزیابی سن استخوانی با استفاده از تصاویر رادیوگرافی دست می باشد. روش ها: در این پژوهش که از نوع بنیادی-کاربردی می باشد، از مجموعه تصاویر رادیوگرافی انجمن رادیولوژی آمریکای شمالی (Radiological Society of North America) RSNA استفاده شد و روش یادگیری انتقالی برای تخمین سن استخوانی کودکان پیشنهاد گردید. تصاویر ورودی، ابتدا به دلیل کیفیت پایین مورد پیش پردازش قرار گرفتند. سپس مدل از پیش آموزش دیده 121DenseNet-برای استخراج ویژگی های مکانی متمایزکننده مورد استفاده قرار گرفت. یافته ها: ارزیابی ها با استفاده از پنج مدل از پیش آموزش دیده و بر روی مجموعه ی داده ی RSNA نشان دادند که مدل 121DenseNet-پس از تنظیم می تواند با میانگین خطای مطلق 9/8 ماه بهتر از سایر مدل ها عمل کند. نتیجه گیری: بلوغ اسکلتی می تواند با استفاده از مدل 121DenseNet-با دقت رضایت بخشی تخمین زده شود و از این روش می توان به رادیولوژیست ها در اندازه گیری سریع و دقیق سن استخوانی کمک نمود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 204

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 37 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    14
  • شماره: 

    1
  • صفحات: 

    211-237
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    98
  • دانلود: 

    66
چکیده: 

مقدمه و اهداف: با توجه به پیشرفت های جدید در دنیای مدرن، استفاده از الگوهای کنترل کیفیت چندمتغیره-چندمرحله ای در صنایع تولید به عنوان موضوعی حیاتی و ضروری مطرح می شود. این پژوهش به بررسی اهمیت و ضرورت کنترل کیفیت چندمتغیره-چندمرحله ای در صنایع تولیدی با تاکید بر تولید روغن موتور پرداخته است. کیفیت روغن موتور به عنوان یک عامل بنیادین، تأثیر قابل توجهی بر عملکرد، عمر موتور، رضایت مشتریان و موقعیت محصول در بازار دارد.در این تحقیق، برای مانیتورینگ و تشخیص خطا در مولفه های کیفی، استفاده از الگوریتم های یادگیری عمیق، مد نظر قرار گرفته است. علت اصلی انتخاب الگوریتم های یادگیری عمیق به جای روش های کلاسیک آماری، نرمال نبودن داده ها و حجم بزرگ نمونه ها بوده است. این مشکلات می توانند باعث عدم دقت تخمین ها و ناپایداری تحلیل ها شوند. از طرفی، توانمندی های منحصر به فرد الگوریتم های یادگیری عمیق در تجزیه وتحلیل داده های پیچیده و استخراج ویژگی های معنادار از داده های گسترده تولید روغن موتور، دلیل اصلی بر انتخاب این الگوریتم ها است.روش­ ها: در این پژوهش، به منظور افزایش دقت و کنترل کیفیت مؤثر، از الگوریتم های یادگیری عمیق ترکیبی از جمله شبکه عصبی با حافظۀ طولانی -کوتاه مدت و شبکه  عصبی پیچشی، LSTM-CNN و شبکه باقیمانده ـ شبکه عصبی پیچشی متصل و ResNet-DenseNet برای کنترل مؤلفه های کیفی استفاده شده است. در این پژوهش، با توجه به نیاز به تحلیل و کنترل داده های پیچیده و چندمتغیره، از الگوریتم LSTM-CNN برای کنترل کیفی متغیرهای عددی و تشخیص الگوهای زمانی و توالی در داده ها استفاده شده است. همچنین، برای مدیریت و تجزیه و تحلیل داده های بصری که توزیع های غیریکنواخت و پیچیده ای دارند، از الگوریتم ResNet-DenseNet استفاده شده است. این الگوریتم ها با استفاده از ترکیبی از شبکه های عصبی با حافظه طولانی- کوتاه مدت و شبکه های پیچشی، قادر به استخراج ویژگی های معنادار و ارتباطات پیچیده میان داده ها هستند، که این امر باعث بهبود عملکرد و کارایی در فرایندهای کنترل کیفیت و تصمیم گیری هوشمند می شود. این روش قادر به تشخیص الگوهای پنهان و ارتباطات پیچیده بین متغیرها و ویژگی های کیفیتی موجود در داده ها است و قابلیت بهبود فرایندهای کنترل کیفیت و تصمیم گیری هوشمند را تسهیل می کند.یافته­ ها: ترکیب قابلیت های این الگوریتم ها، عملکرد فرایند کنترل کیفیت را بهبود می بخشد و نتایج بهتری نسبت به روش های تک­الگوریتمی به­دست می آورد؛ به علاوه از الگوریتم کلونی زنبورعسل (GBC) برای تنظیم پارامترهای الگوریتم های یادگیری عمیق LSTM-CNN و ResNet-DenseNet استفاده شده است. این الگوریتم به عنوان یک رویکرد ترکیبی عمل می کند و از مزایای الگوریتم کلونی زنبور عسل مصنوعی(ABC) و الگوریتم ژنتیک (GA) بهره می برد. این ترکیب به میزان زیادی عملکرد الگوریتم های یادگیری عمیق را در فرایندهای کنترل کیفیت بهبود می بخشد و زمان رسیدن به نتیجه مطلوب را کاهش می دهد. به منظور نمایش کاربرد عملی الگوریتم های ارائه شده در جهان واقعی، یک مطالعه موردی از صنعت تولید روغن موتور بررسی شده است. الگوریتم ترکیبی LSTM-CNN پیشنهادی در فرایند تشخیص خطا، نتیجه بهتری نسبت به الگوریتم های تکی CNN  و LSTM داشته و عملکرد نتایج را به­ترتیب به­میزان 15 و 8 درصد ارتقا داده است؛ همچنین در مؤلفه های تصویری، الگوریتم ترکیبی پیشنهادی ResNet-DenseNet نسبت به الگوریتم های ResNet و DenseNet به ترتیب با دقت بالاتری، به میزان 10 و 15 درصد عمل کرده است.نتیجه ­گیری: از نظر علمی و عملی، در این پژوهش تأثیر الگوریتم های یادگیری عمیق در بهبود کیفیت و کارایی روغن موتور را مورد بررسی قرار گرفته و از روش های پیشرفته تجزیه وتحلیل داده، به ویژه الگوریتم های ترکیبی عمیق، برای شناسایی الگوهای کیفی در داده های تولید استفاده شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 98

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 66 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    12
  • شماره: 

    2
  • صفحات: 

    30-46
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    120
  • دانلود: 

    28
چکیده: 

آگاهی از مسائل حوزه دریایی برای مدیریت بحران در صورت بروز حوادث بسیار مهم است، نشت نفت یکی از تهدیدهای اصلی برای محیط های دریایی و ساحلی محسوب می شود و به طور جدی بر اکوسیستم دریایی تأثیر می گذارد و نگرانی های سیاسی و زیست محیطی ایجاد می کند، زیرا اکوسیستم شکننده دریایی و ساحلی را به طور جدی تحت تأثیر قرار می دهد. میزان تخلیه آلاینده ها و اثرات مرتبط با آن بر محیط دریایی، پارامترهای مهمی در ارزیابی کیفیت آب دریاها هستند. نظارت موثر، شناسایی زودهنگام و برآورد حجم این لکه های نقتی اولین و مهمترین مرحله برای یک عملیات پاکسازی موفق است. سنسورهای رادار دریچه مصنوعی (SAR) به دلیل قابلیت عملکرد موثر بدون توجه به وضعیت آب و هوا و شرایط روشنایی محیط و برداشت منطقه وسیعی از زمین، انتخاب بسیار مناسبی برای این منظور هستند. لکه های سیاه مربوط به نشت نفت را می توان به وضوح توسط سنسورهای SAR ثبت کرد، با این حال تمایز آنها از نظر ظاهری یک هدف چالش برانگیز است. در این مطالعه از تصاویر رادار ماهواره سنتینل-1 برای شناسایی نشت نفت استفاده شده است. این مطالعه یک چارچوب یادگیری عمیق برای شناسایی لکه های نفتی بر اساس یک مجموعه داده بسیار وسیع از نقاط مختلف دنیا ارئه داده و با استفاده از ساختار شبکه های کانوولوشن U-Net و DeepLabV3+ و Fc-DenseNet طبقه بندی تصاویر را به دو کلاس انجام می دهد. در این پژوهش با تغییر تابع ضرر و حذف تصاویر تک کلاسه نتایج بسیار بهتری نسبت به کار های مشابه قبلی حاصل شد. به طوری که نتایج IoU برای مدل های U-Net، DeepLabV3+ و FC-DenseNet بترتیب برابر 0. 547، 0. 613 و 0. 545 بدست آمد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 120

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 28 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    16
  • شماره: 

    4
  • صفحات: 

    117-122
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    29
  • دانلود: 

    0
چکیده: 

To stop vision loss from glaucoma, early identification and regular screening are crucial. Convolutional neural networks (CNN) have been effectively used in recent years to diagnose glaucoma automatically from color fundus pictures. CNNs can extract distinctive characteristics directly from the fundus pictures, as opposed to the current automatic screening techniques. In this study, a CNN-based deep learning architecture is created for the categorization of normal and glaucomatous fundus pictures. In this paper, we propose a deep learning-based framework for the detection of glaucoma based on retinal images. Our proposed approach utilizes the two CNN-based models, namely Inception and DenseNet, in order to classify the input images. We also show the impact of transfer learning on the training and the validation processes and put forward an effective pipeline with lower trainable parameters for the target task. Our experiments on a collected dataset demonstrate the efficacy of the proposed model by achieving an accuracy of 93. 84%, a precision of 92. 83%, and a recall of 95. 00%.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    17
  • شماره: 

    1
  • صفحات: 

    334-345
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    112
  • دانلود: 

    1
چکیده: 

زمینه و هدف: در دسته چهارم از سیستم طبقه بندی BI-RADS یا به عبارت دیگر دسته 4 BI-RADS احتمال میزان بدخیمی ضایعات بافت پستان بین 2 تا 95 درصد است که این امر تشخیص و در نتیجه درمان مورد نیاز برای بیمار را با چالش روبه رو خواهد ساخت. تصویربرداری ماموگرافی طیفی با کنتراست یکی از روش های کارآمد در تشخیص سرطان پستان است؛ بنابراین مطالعه حاضر با هدف ارزیابی عملکرد تشخیصی تصاویر ماموگرافی طیفی با کنتراست در تعیین دقیق میزان بدخیمی دسته BI-RADS 4 در مراحل اولیه درمان سرطان پستان به مقایسه کارایی روش های یادگیری عمیق در این رابطه پرداخته است. روش بررسی: در این مطالعه از 1408 تصویر ماموگرافی طیفی با کنتراست شامل ضایعات مشکوک خوش خیم و بدخیم سرطان پستان دسته BI-RADS 4 استفاده شده است. ابتدا مرحله پیش پردازش با هدف حذف موارد نامطلوب و بهبود کیفیت تصویر و پس از آن ناحیه بندی با هدف تمایز ناحیه تومور از بقیه تصویر اعمال شد. مرحله بعد در مطالعه حاضر، استخراج ویژگی از ناحیه تومور با استفاده از 3 شبکه عصبی کانولوشن و در نهایت طبقه بندی تصاویر با استفاده از روش های یادگیری ماشین است. یافته ها: با توجه به روش کار پیشنهادی عملکرد شبکه DenseNet-201 در استخراج ویژگی و روش نزدیک ترین همسایه (KNN) در طبقه بندی با مقادیر حساسیت 99/2 درصد، اختصاصیت 97/5 درصد، صحت 98/57 درصد و 0/987 AUC بهتر از سایر مدل های پیشنهادی گزارش شد. نتیجه گیری: مدل پیشنهادی یادگیری عمیق با استفاده از تصاویر ماموگرافی طیفی با کنتراست، کارایی قابل توجهی در تشخیص میزان بدخیمی BI-RADS 4 در تشخیص زودهنگام و درمان به موقع سرطان پستان دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 112

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 7
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    8
  • شماره: 

    2
  • صفحات: 

    131-142
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    147
  • دانلود: 

    0
چکیده: 

Purpose: Coronavirus disease 2019 (Covid-19), first reported in December 2019 in Wuhan, China, has become a pandemic. Chest imaging is used for the diagnosis of Covid-19 patients and can address problems concerning Reverse Transcription-Polymerase Chain Reaction (RT-PCR) shortcomings. Chest X-ray images can act as an appropriate alternative to Computed Tomography (CT) for diagnosing Covid-19. The purpose of this study is to use a Deep Learning method for diagnosing Covid-19 cases using chest X-ray images. Thus, we propose Covidense based on the pre-trained DenseNet-201 model and is trained on a dataset comprising chest X-ray images of Covid-19, normal, bacterial pneumonia, and viral pneumonia cases. Materials and Methods: In this study, a total number of 1280 chest X-ray images of Covid-19, normal, bacterial and viral pneumonia cases were collected from open access repositories. Covidense, a convolutional neural network model, is based on the pre-trained DenseNet-201 architecture, and after pre-processing the images, it has been trained and tested on the images using the 5-fold cross-validation method. Results: The accuracy of different classifications including classification of two classes (Covid-19, normal), three classes 1 (Covid-19, normal and bacterial pneumonia), three classes 2 (Covid-19, normal and viral pneumonia), and four classes (Covid-19, normal, bacterial pneumonia and viral pneumonia) are 99. 46%, 92. 86%, 93. 91 %, and 91. 01% respectively. Conclusion: This model can differentiate pneumonia caused by Covid-19 from other types of pneumonia, including bacterial and viral. The proposed model offers high accuracy and can be of great help for effective screening. Thus, reducing the rate of infection spread. Also, it can act as a complementary tool for the detection and diagnosis of Covid-19.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 147

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    1
  • شماره: 

    2
  • صفحات: 

    105-117
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    39
  • دانلود: 

    0
چکیده: 

تجزیه و تحلیل احساسات افراد از محتوای رسانه های اجتماعی از طریق متن، گفتار و تصاویر، در انواع مختلفی از برنامه ها و کاربردها مورد نیاز است. اکثر مطالعات تحقیقاتی اخیر در زمینه تجزیه و تحلیل احساسات، بر داده های متنی تمرکز داشته اند. با این حال، کاربران رسانه های اجتماعی، عکس ها و فیلم های مشابه بیشتری نسبت به متن به اشتراک می گذارند. به عبارت دیگر، تصاویر بهترین روش برای انتقال احساسات به دیگران هستند. از این رو، تمرکز بر توسعه یک مدل تحلیل احساسات بر اساس تصاویر در رسانه های اجتماعی اهمیت دارد. در این مقاله، از مدل یادگیری انتقال DenseNet-121 برای تحلیل احساسات بر اساس تصاویر استفاده خواهیم کرد. برای پیاده سازی این روش، از تصاویر موجود در مجموعه داده Image Sentiment استفاده خواهیم نمود. این مجموعه داده شامل آدرس های اینترنتی تصاویر به همراه قطبیت های احساسی آن ها است. بر اساس نتایج به دست آمده، دقت مدل پیشنهادی در این مقاله برابر با 89 % است که در مقایسه با کارهای پیشین در زمینه تجزیه و تحلیل احساسات بصری، مدل پیشنهادی، بهبود 5 تا 10 درصدی را نشان می دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 39

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button