فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی










متن کامل


نویسندگان: 

JAFAR TAFRESHI LEILA | YAGHMAEE FARZIN

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    4
  • شماره: 

    3
  • صفحات: 

    167-173
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    369
  • دانلود: 

    0
چکیده: 

Data mining and knowledge discovery are important technologies for business and research. Despite their benefits in various areas such as marketing, business and medical analysis, the use of data mining techniques can also result in new threats to privacy and information security. Therefore, a new class of data mining methods called privacy preserving data mining (PPDM) has been developed. The aim of researches in this field is to develop techniques those could be applied to databases without violating the privacy of individuals. In this work we introduce a new approach to preserve sensitive information in databases with both numerical and categorical attributes using fuzzy logic. We map a database into a new one that conceals private information while preserving mining benefits. In our proposed method, we use fuzzy membership functions (MFs) such as Gaussian, P-shaped, Sigmoid, S-shaped and Z-shaped for private data. Then we cluster modified datasets by Expectation Maximization (EM) algorithm. Our experimental results show that using fuzzy logic for preserving data privacy guarantees valid data clustering results while protecting sensitive information. The accuracy of the clustering algorithm using fuzzy data is approximately equivalent to original data and is better than the state of the art methods in this field.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 369

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 3
نویسندگان: 

MA L. | YANG L.

اطلاعات دوره: 
  • سال: 

    2007
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    690-693
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    151
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 151

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Ehsaeyan E.

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    38
  • شماره: 

    12
  • صفحات: 

    2953-2964
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    5
  • دانلود: 

    0
چکیده: 

Multilevel image thresholding is essential for segmenting images. Expectation Maximization (EM) is effective for finding thresholds; but, it is sensitive to starting points. The Grey Wolf Optimizer (GWO) is fast at finding thresholds but can get stuck in local optima. This paper presents a new algorithm, EM+GWO, combining both methods to improve segmentation. EM estimates Gaussian Mixture Model (GMM) coefficients, while GWO finds better solutions when EM is stuck. GWO adjusts GMM parameters using Root Mean Square Error (RMSE) for the best fit. The algorithm was tested on nine standard images, evaluating global fitness, PSNR, SSIM, FSIM, and computational time. The results show that EM+GWO significantly enhances image segmentation effectiveness. Statistical tools indicate that RCG achieves the best RMSE and PSNR in 7 out of 9 test images, and it holds the highest rank in both SSIM and FSIM. The average execution time of each algorithm was calculated, showing that EM+GWO has an acceptable running time compared to EM and GWO. This balance between computational efficiency and improved segmentation performance makes the proposed EM+GWO algorithm a robust and effective solution for image segmentation tasks. Overall, the combination of EM and GWO methods provides a more reliable and accurate approach to optimizing image segmentation, avoiding local optima, and enhancing overall performance.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1393
  • دوره: 

    11
تعامل: 
  • بازدید: 

    309
  • دانلود: 

    148
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 309

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 148
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    2
  • شماره: 

    1
  • صفحات: 

    1-8
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    241
  • دانلود: 

    0
چکیده: 

The aim of this study is to introduce a parametric mixture model to analysis the competing-risks data with two types of failure. In mixture context, ith type of failure is i th component. The baseline failure time for the first and second types of failure are modeled as proportional hazard models according to Weibull and Gompertz distributions, respectively. The covariates affect on both the probability of occurrence and the hazards of the failure types. The probability of occurrence is modeled to depend on covariates through the logistic model. The parameters can be estimated by application of the Expectation-conditional Maximization and Newton-Raphson algorithms. The simulation studies are performed to compare the proposed model with parametric cause-specific and Fine and Gray models. The results show that the proposed parametric mixture method compared with other models provides consistently less biased estimates for low, mildly, moderately, and heavily censored samples. The analysis of post-kidney transplant malignancy data showed that the conclusions obtained from the mixture and other approaches have some different interpretations.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 241

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1386
  • دوره: 

    25
  • شماره: 

    84
  • صفحات: 

    49-57
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    962
  • دانلود: 

    175
چکیده: 

مقدمه: لوسمی یکی از انواع بیماری های بدخیم دستگاه خونساز بدن است که در مدت زمان بسیار کوتاهی باعث مرگ و میر می شود؛ در این مقاله، عوامل موثر بر زمان بقای بیماران مبتلا به لوسمی حاد لنفوئیدی (ALL)، مورد بررسی قرار گرفته است تا برای درک ارتباط میان زمان بقای این بیماران با عوامل موثر Expectation & Maximation، مدل رگرسیون پیش بینی کننده مناسبی به دست آید.روش ها: اطلاعات 52 بیمار لوسمی فوت شده در بیمارستان سید الشهدا (ع) اصفهان بررسی شد. مدل رگرسیون پیش بینی کننده مد نظر شامل متغیرهای هموگلوبین، سلول های نابالغ و سن بیمار بود. به دلیل توزیع آمیخته داده های موجود، یک مدل آمیخته برای زمان بقای بیماران در نظر گرفته، با استفاده از الگوریتم EM، برآورد بیشینه درست نمایی میانگین بقا را محاسبه کردیم. همچنین با به کارگیری روش شبیه سازی مونت کارلویی زنجیره های مارکف (MCMC) برآورد بیزی میانگین بقا را به دست آوردیم.یافته ها: با استفاده از روش های آماری فوق، تابع بقایی را به دست آوردیم که با استفاده از آن می توان مدت زمان بقای بیماران را بر حسب روز (به عنوان پیش آگهی) پیش بینی کرده در مورد درمان بیمار تصمیم گرفت.نتیجه گیری: به نظر می رسد می توان با مطالعات با حجم بیشتر و استفاده از روش ها و آزمون های آماری ذکر شده در این مقاله، ارتباطی بین یافته های بالینی و آزمایشگاهی و میزان بقا پیدا کرد. لذا می توان از این مدل برای سایر بیماری ها نیز جهت تعیین پیش آگهی استفاده نمود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 962

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 175 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    54
  • شماره: 

    1
  • صفحات: 

    121-131
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    41
  • دانلود: 

    11
چکیده: 

We address the throughput Maximization problem for downlink transmission in DF-relay-assisted cognitive radio networks (CRNs) based on simultaneous wireless information and power transfer (SWIPT) capability. In this envisioned network, multiple-input multiple-output (MIMO) relay and secondary user (SU) equipment are designed to handle both radio frequency (RF) signal energy harvesting and SWIPT functional tasks. Additionally, the cognitive base station (CBS) communicates with the SU only via the MIMO relay. Based on the considered network model, several combined constraints of the main problem complicate the solution. Therefore, in this paper, we apply heuristic guidelines within the convex optimization framework to handle this complexity. First, consider the problem of maximizing throughput on both sides of the relay separately. Second, each side progresses to solve the complex problem optimally by adopting strategies for solving sub-problems. Finally, these optimal solutions are synthesized by proposing a heuristic iterative power allocation algorithm that satisfies the combinatorial constraints with short convergence times. The performance of the optimal proposed algorithm (OPA) is evaluated against benchmark algorithms via numerical results on optimality, convergence time, constraints’ compliance, and imperfect channel state information (CSI) on the CBS-PU link.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 41

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 11 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    1
  • شماره: 

    2
  • صفحات: 

    111-129
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    63
  • دانلود: 

    0
چکیده: 

In this paper, we discuss the calibration of the geometric Brownian motion model equipped with Markov-switching factor. Since the motivation for this research comes from a recent stream of literature in stock economics, we propose an efficient estimation method to sample a series of stock prices based on the Expectation-Maximization algorithm. We also implement an empirical application to evaluate the performance of the suggested model. Numerical results through the classification of the data set show that the proposed Markov-switching model fits the actual stock prices and reflects the main stylized facts of market dynamics. Since the motivation for this research comes from a recent stream of literature in stock economics, we propose an efficient estimation method to sample a series of stock prices based on the Expectation-Maximization algorithm. Numerical results through the classification of the data set show that the proposed Markov-switching model fits the actual stock prices and reflects the main stylized facts of market dynamics. Since the motivation for this research comes from a recent stream of literature in stock economics, we propose an efficient estimation method to sample a series of stock prices based on the Expectation-Maximization algorithm.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 63

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    11
تعامل: 
  • بازدید: 

    185
  • دانلود: 

    0
چکیده: 

AUTOMATIC SEGMENTATION OF BRAIN TISSUES IS CRUCIAL TO MANY MEDICAL IMAGING APPLICATIONS. ACCURATE AND FAST BRAIN TISSUE SEGMENTATION IS NEEDED FOR MANY MEDICAL DIAGNOSTIC AND THERAPEUTIC PROCEDURES. WE USE A MULTI-RESOLUTION ANALYSIS AND A POWER TRANSFORM TO EXTEND THE WELL-KNOWN GAUSSIAN MIXTURE MODEL Expectation Maximization BASED ALGORITHM FOR SEGMENTATION OF WHITE MATTER, GRAY MATTER, AND CEREBROSPINAL FLUID FROM T1-WEIGHTED MAGNETIC RESONANCE IMAGES (MRI) OF THE BRAIN. EXPERIMENTAL RESULTS WITH NEAR 4000 SYNTHETIC AND REAL IMAGES ARE INCLUDED. THE RESULTS ILLUSTRATE THAT THE PROPOSED METHOD OUTPERFORMS SIX EXISTING METHODS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 185

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

PARASURAMAN A. | ZEITHAML V.A. | BERRY L.L.

نشریه: 

SLOAN MANAGEMENT REVIEW

اطلاعات دوره: 
  • سال: 

    1991
  • دوره: 

    32
  • شماره: 

    3
  • صفحات: 

    39-48
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    243
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 243

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button