فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

JAFARIAN A. | Farnad B.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    11
  • شماره: 

    2
  • صفحات: 

    143-156
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    169
  • دانلود: 

    0
چکیده: 

Particle swarm optimization (PSO) is one of the practical metaheuristic ALGORITHMs which is applied for numerical global optimization. It bene ts from the nature inspired swarm intelligence, but it su ers from a local optima problem. Recently, another nature inspired metaheuristic called Symbiotic Organisms Search (SOS) is proposed, which doesn't have any parameters to set at start. In this paper, the PSO and SOS ALGORITHMs are combined to produce a new HYBRID metaheuristic ALGORITHM for the global optimization problem, called PSOS. In this ALGORITHM, a minimum number of the parameters are applied which prevent the trapping in local solutions and increase the success rate, and also the SOS interaction phases are modi ed. The proposed ALGORITHM consists of the PSO and the SOS phases. The PSO phase gets the experiences for each appropriate solution and checks the neighbors for a better solution, and the SOS phase bene ts from the gained experiences and performs symbiotic interaction update phases. Extensive experimental results showed that the PSOS outperforms both the PSO and SOS ALGORITHMs in terms of the convergence and success rates.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 169

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1393
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    12-22
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1447
  • دانلود: 

    551
چکیده: 

با پیشرفت تکنولوژی و مجهزشدن دوربین های تصویربرداری، دقت تصاویر موجود افزایش یافته است. بالارفتن دقت تصاویر نقش مهمی در کیفیت تجزیه و تحلیل آنها دارد اما این دقت که به واسطه افزایش نقاط موجود در تصویر و بالارفتن حجم اطلاعاتی آن حاصل شده است، مشکلات بسیاری را در خصوص نگهداری و سرعت پردازش تصاویر به وجود آورده و به همین دلیل مساله ساده سازی سرزمین مطرح شده است (معمولا یک سرزمین به صورت مجموعه ای از n نقطه در فضای سه بعدی تعریف می شود). هدف مساله ساده سازی این است که تعدادی از نقاط یک سرزمین حذف شود به نحوی که خطای سرزمین پس از ساده سازی، بیشتر از میزان تعیین شده نباشد. خطای ساده سازی به دو صورت تعریف می شود، یکی این که پس از ساده سازی، m نقطه با حداقل خطا در سرزمین وجود داشته باشد (m£n) یا این که حداکثر خطا پس از ساده سازی به ازای کمترین تعداد نقاط، e باشد (e>0). این مساله در حوزه مسایل ان پی- سخت قرار دارد.در این مقاله، یک الگوریتم هیبرید برای ساده سازی سرزمین مطرح شده است که در سه مرحله ساده سازی را انجام می دهد.ابتدا سرزمین مربوط بر اساس یکی از روش های خوشه بندی به تعدادی خوشه تقسیم می شود، سپس هر خوشه بر اساس یک الگوریتم ساده سازی به صورت مجزا ساده می شود و در نهایت خوشه های ساده شده با هم ادغام می شوند. این الگوریتم از نظر زمان اجرا در رده مسایل (n2Ön) O قرار دارد. در انتهای مقاله، الگوریتم مطرح شده روی سرزمین های واقعی مورد آزمایش قرار گرفته و نتایج با استفاده از معیارهای موجود تحلیل شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1447

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 551 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Doraghinejad Mohammad | NEZAMABADIPOUR HOSSEIN | Hashempour Sadeghian Armindokht | Maghfoori Malihe

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    4
تعامل: 
  • بازدید: 

    162
  • دانلود: 

    0
چکیده: 

NOWADAYS, UTILIZING HEURISTIC ALGORITHMS IS HIGHLY APPRECIATED IN SOLVING OPTIMIZATION PROBLEMS. THE FUNDAMENTAL OF THESE ALGORITHMS ARE INSPIRED BY NATURE. THE GRAVITATIONAL SEARCH ALGORITHM (GSA) IS A NOVEL HEURISTIC SEARCH ALGORITHM WHICH IS INVENTED BY USING LAW OF GRAVITY AND MASS INTERACTIONS. IN THIS PAPER, A NEW OPERATOR IS PRESENTED WHICH IS CALLED "THE BLACK HOLE". THIS OPERATOR IS INSPIRED BY THE CONCEPT OF AN ASTRONOMY PHENOMENON. BY ADDING THE BLACK HOLE OPERATOR, THE EXPLOITATION OF THE GSA IS IMPROVED. THE PROPOSED ALGORITHM IS EVALUATED BY SEVEN STANDARD UNIMODAL BENCHMARKS. THE RESULTS OBTAINED DEMONSTRATE BETTER PERFORMANCE OF THE PROPOSED ALGORITHM IN COMPARISON WITH THOSE OF THE STANDARD GSA AND OTHER VERSION OF GSA WHICH IS EQUIPPED WITH THE DISRUPTION OPERATOR.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 162

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    5
  • شماره: 

    2
  • صفحات: 

    34-48
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    21
  • دانلود: 

    0
چکیده: 

Bitcoin and digital currencies have emerged as a new market for investment. Therefore, the prediction of their future trend and prices is highly significant. In this research, the factors influencing the price of bitcoin were identified and extracted based on previous researches. The identified factors include the US dollar index, CPI index, S and P 500, Dow Jones, and gold price. Considering the performance of metaheuristic ALGORITHMs in predicting bitcoin price, this research utilized genetic ALGORITHM and particle swarm optimization ALGORITHM, and proposed a HYBRID ALGORITHM to improve their performance.According to our results, among the investigated factors, the US dollar index has the greatest impact on bitcoin price, followed by inflation rate and the CPI index. Additionally, the proposed HYBRID ALGORITHM outperforms the particle swarm optimization and genetic ALGORITHMs, with a prediction error of 7.3%. It should be noted that the type and magnitude of the impact of the investigated factors may change over time. For example, a factor that previously had a direct impact may become reversed or neutralized over time.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 21

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Yassami Mohammad | Ashtari Payam

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    6
  • شماره: 

    2
  • صفحات: 

    295-318
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    52
  • دانلود: 

    0
چکیده: 

Numerous ALGORITHMs have recently been invented with varying strengths and weaknesses, none of which is the best for all cases. Herein, a HYBRID optimization method known as a PSOHHO optimization ALGORITHM is presented. There are two methods for combining ALGORITHMs: parallel and sequential. We adopted the parallel method and optimized the ALGORITHM's performance. We cover the weaknesses of one ALGORITHM with the strengths of another ALGORITHM using a new method of combination. In this method, using several formulas, the top populations are exchanged between the two ALGORITHMs, and a new population is created. With this ability, the strengths of an ALGORITHM can be used to compensate for the weaknesses of the other ALGORITHM. In this method, no changes are made to the ALGORITHMs. The main goal is to use existing ALGORITHMs. This method aims to attain the optimal solution in the shortest time possible. Two ALGORITHMs of particle swarm optimization (PSO) and Harris Hawks optimization (HHO) were used to present this method and five truss samples were considered to confirm the performance of this method. Based on the results, this method has rapid convergence speed and acceptable results compared to the other methods. It also yields better results than its basic ALGORITHMs.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 52

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

SARBAZFARD SOSAN | JAFARIAN AHMAD

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    8
  • شماره: 

    2 (28)
  • صفحات: 

    21-38
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    257
  • دانلود: 

    0
چکیده: 

In this paper, a new and an effective combination of two metaheuristic ALGORITHMs, namely Firefly ALGORITHM and the Differential evolution, has been proposed. This HYBRIDization called as HFADE, consists of two phases of Differential Evolution (DE) and Firefly ALGORITHM (FA). Firefly ALGORITHM is the nature-inspired ALGORITHM which has its roots in the light intensity attraction process of firefly in the nature. Differential evolution is an Evolutionary ALGORITHM that uses the evolutionary operators like selection, recombination and mutation. FA and DE together are effective and powerful ALGORITHMs but FA ALGORITHM depends on random directions for search which led into retardation in finding the best solution and DE needs more iteration to find proper solution. As a result, this proposed method has been designed to cover each ALGORITHM deficiencies so as to make them more suitable for optimization in real world domain. To obtain the required results, the experiment on a set of benchmark functions was performed and findings showed that HFADE is a more preferable and effective method in solving the high-dimensional functions.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 257

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Jensi r.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
  • شماره: 

    2
  • صفحات: 

    93-106
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    85
  • دانلود: 

    0
چکیده: 

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering ALGORITHMs in many fields, a lot of research is still going on to find the best and efficient clustering ALGORITHM to partition the data items. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper, a new HYBRID data clustering approach which combines the modified krill herd and K-means ALGORITHMs, named as K-MKH, is proposed. K-MKH ALGORITHM utilizes the power of quick convergence behaviour of K-means and efficient global exploration of Krill Herd and random phenomenon of Levy flight method. The Krill-herd ALGORITHM is modified by incorporating Levy flight into it to improve the global exploration. The proposed ALGORITHM is tested on artificial and real life datasets. The simulation results are compared with other methods such as K-means, Particle Swarm Optimization (PSO), Original Krill Herd (KH), HYBRID K-means and KH. Also the proposed ALGORITHM is compared with other evolutionary ALGORITHMs such as HYBRID modified cohort intelligence and K-means (K-MCI), Simulated Annealing (SA), Ant Colony Optimization (ACO), Genetic ALGORITHM (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and K-means++. The comparison shows that the proposed ALGORITHM improves the clustering results and has high convergence speed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 85

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    12
تعامل: 
  • بازدید: 

    157
  • دانلود: 

    0
چکیده: 

INFERRING GENE REGULATORY NETWORKS (GRNS) FROM GENE EXPRESSION DATA SETS IS A CHALLENGING TASK IN BIOINFORMATICS. THE PC ALGORITHM BASED ON CONDITIONAL MUTUAL INFORMATION (PCA-CMI) IS A WELL KNOWN METHOD IN THIS FIELD. THE CONDITIONAL MUTUAL INFORMATION TEST IS USED TO DETERMINE THE CONDITIONAL DEPENDENCE BETWEEN GENES IN PCA-CMI. IN THIS STUDY, WE INTRODUCE A NEW ALGORITHM TO INFER GRNS. OUR ALGORITHM IS A COMBINATION OF PCA-CMI AND HILL CLIMBING ALGORITHM.THE SKELETON OF THE GRNS IS DETERMINED BY PCA-CMI. THEN, HILL CLIMBING ALGORITHM (BASED ON MUTUAL INFORMATION TEST (MIT)) IS USED TO GIVE DIRECTION TO THE EDGES OF SKELETON. THE RESULT OF OUR ALGORITHM IS A DIRECTIONAL NETWORK WHILE PCA-CMI IS UNABLE TO DETERMINE THE REGULATORY DIRECTIONS.THE MERITS OF THE NEW ALGORITHM ARE EVALUATED BY APPLYING THIS ALGORITHM ON THE DREAM3 CHALLENGE DATA SETS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 157

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

SEDGHI M. | ALIAKBAR GOLKAR M.

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    5
  • شماره: 

    2
  • صفحات: 

    122-130
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    394
  • دانلود: 

    0
چکیده: 

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing total cost of the objective function with technical constraints and reliability limits, make it a combinatorial problem which should be solved by optimization ALGORITHMs. This paper presents a new HYBRID simulated annealing and tabu search ALGORITHM for distribution network expansion problem. Proposed HYBRID ALGORITHM is based on tabu search and an auxiliary simulated annealing ALGORITHM controls the tabu list of the main ALGORITHM. Also, another auxiliary simulated annealing based ALGORITHM has been added to local searches of the main ALGORITHM to make it more efficient. The numerical results show that the method is very accurate and fast comparing with the other ALGORITHMs.  

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 394

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

MAJIDNEZHAD V. | GADER H.M. | EFIMOV E.

اطلاعات دوره: 
  • سال: 

    2011
  • دوره: 

    8
  • شماره: 

    2
  • صفحات: 

    32-38
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    170
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button