Let $t_p(G)$ denote the number of paths in a graph $G$ and let $f:E\rightarrow \mathbb{Z}^+$ be an edge labeling of $G$. The weight of a path $P$ is the sum of the labels assigned to the edges of $P$. If the set of weights of the paths in $G$ is $\{1,2,3,\dots,t_p(G)\}$, then $f$ is called a Leech labeling of $G$ and a graph which admits a Leech labeling is called a Leech graph. In this paper, we prove that the complete bipartite graphs $K_{2,n}$ and $K_{3,n}$ are not Leech graphs and determine the maximum possible value that can be given to an edge in the Leech labeling of a cycle.