فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی










متن کامل


نویسندگان: 

Zarrin Saeed | Mohammad Ahmad | Zeynali Mehdi

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    6
  • شماره: 

    3
  • صفحات: 

    20-31
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    23
  • دانلود: 

    0
چکیده: 

The aim of the present study is to predict audit failure using Metaheuristic Algorithms in companies listed on the Tehran Stock Exchange. To achieve this objective, 1, 848 firm-year observations (154 companies over 12 years) were collected from the annual financial reports of companies listed on the Tehran Stock Exchange during the period from 2011 to 2022. In this study, four Metaheuristic Algorithms (including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Bee Colony Optimization (BCO)) were utilized, as well as two methods for selecting the final research variables (the two-sample t-test and the forward stepwise selection method) to create the model. The results from the Metaheuristic Algorithms indicate that the overall accuracy of the GA, PSO, ACO, and BCO Algorithms is 95. 3%, 94. 5%, 90. 6%, and 92. 8%, respectively, demonstrating the superiority of the Genetic Algorithm (GA) compared to other Metaheuristic Algorithms. Furthermore, the overall results from the variable selection methods indicate the efficiency of the stepwise method. Therefore, in companies listed on the Tehran Stock Exchange, the stepwise method and the Genetic Algorithm (GA) provide the most efficient model for predicting audit failure.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KAVEH A. | ILCHI GHAZAAN M.

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    67-77
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    360
  • دانلود: 

    0
چکیده: 

This paper presents the application of Metaheuristic methods to the minimum crossing number problem for the first time. These Algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in engineering. The proposed Algorithms are tested on six complete graphs and eight complete bipartite graphs and their results are compared with some existing methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 360

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    17
  • شماره: 

    2
  • صفحات: 

    79-90
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

This research article describes the frequency regulation of an interconnected power system that includes wind energy systems and thermal non-reheat systems, with a proportional integral derivative (PID) controller optimized using Metaheuristic Algorithms such as Genetic-Algorithm (GA), Harmony-Search-Algorithm (HSA), Bat-Algorithm (BA), and Flower-Pollination-Algorithm (FPA). With the demand for precisely efficient energy systems growing, system engineers are increasingly looking for the finely optimized control solution that also has the benefit of faster convergence and avoids entrapment in local minimal. To minimize the fitness function which is based on ITAE (Integral of Time multiplied Absolute Error) criteria composed of frequency and tie-line power changes, we have obtained an optimum solution in terms of PID controller gain values using the Metaheuristics optimizing techniques. Change in frequency in area 1, deviation in tie-line power, and change in frequency in area 2 obtained from different techniques are compared. The results obtained by simulating MATLAB/Simulink convey that PID controller gain values optimized using the HSA technique provide better dynamic performance compared to BA, FPA and GA techniques. The simulation results have been experimentally validated using hardware-in-loop (HIL) on a real-time simulator based on field-programmable gate arrays (FPGA). The HSA optimized PID controller is used to investigate the robustness of the system by Step-Load-Perturbation (SLP) and Random Step Load Pattern (RSLP). Results obtained by running simulation also show that the HSA optimized PID controller for the same optimized gain value can withstand the SLP and RSLP variation made in the system.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    18
  • شماره: 

    1 (پیاپی 68)
  • صفحات: 

    101-124
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    591
  • دانلود: 

    217
چکیده: 

انتخاب سبد سهام همواره از اساسی ترین مسایل سرمایه گذاران است. از لحاظ نظری انتخاب سبد سهام در حالت حداقل کردن ریسک با فرض ثبات بازده به کمک روابط ریاضی قابل حل است، اما با تنوع انتخاب در بازار سرمایه، تنها روابط ریاضی، راه حل موثری نیست. تنوع ابزارهای سرمایه گذاری و تفاوت تابع مطلوبیت سرمایه گذاران، فرآیند انتخاب را پیچیده نموده است. اینک گسترش بازارهای مالی و سرمایه، استفاده از سیستمهای قاعده محور برای تصمیمگیری های سریع، با ریسک حداقل و به دور از اشتباهات انسانی، طراحی، توسعه یا بهبود این سیستمها می تواند به عنوان مزیت رقابتی باشد. در پژوهش حاضر، از الگوریتم شبکههای عصبی و برنامهنویسی شبکه ژنتیک، برای تشخیص ویژگی های موثر و از درخت تصمیم ID3 بهبودیافته به عنوان روش پیشنهادی جهت پیشبینی قیمت و روند تغییر قیمت سهام برای انتخاب سبد بهینه استفاده شده است. نتایج تحقیق نشان می دهد، روش پیشنهادی علاوه بر کاهش سربار محاسباتی و حافظه ای، قادر است تا با دقت بالایی به پیشبینی نوسانات شدید با الگوهای غیرخطی پرداخته و نسبت به روش های روز دنیا چون جستجوی نزدیک ترین همسایگی، رگرسیون خطی، میانگین متحرک خود همبسته و الگوریتم پیش بینی سری زمانی، بهتر عمل نماید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 591

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 217 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    7
  • شماره: 

    2
  • صفحات: 

    164-177
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    142
  • دانلود: 

    0
چکیده: 

Supplier selection, order allocation and production planning are important and challenging decisions in supply chain management. There are many studies on mentioned topics separately. In this paper, a multi-objective mathematical model is proposed to optimize a sustainable supplier selection problem with order allocation and production planning simultaneously. This study considers a multi-supplier, multi-product, multi-item and multi-period supply chain. The designed mathematical model seeks to maximize total profit and minimize unsatisfied demand and total risk along with enforcing sustainability criteria in selecting suppliers. Supplier selection is a virtual process in every manufacturing company. On the other hand, this research considers all the important aspects of this problem. Therefore, the proposed framework can be implemented in many different companies like electronic, food, chemical industry. The proposed model is solved utilizing two Metaheuristic Algorithms including NSGA II and MOPSO. Moreover, Algorithms are tuned utilizing Taguchi analysis. Furthermore, ten sample problems are generated and results are compared to identify the best algorithm for the proposed model.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 142

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Ghasab Mehrjerd A. | RAHBARNIA F.

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    5
تعامل: 
  • بازدید: 

    141
  • دانلود: 

    0
چکیده: 

WE INVESTIGATE VARIOUS TYPES OF Algorithms FOR SOLVING THE GRAPH PARTITIONING PROBLEM. FIRST WE REVIEW TABU SEARCH Algorithms. THEN, WE EXPLORE TO SOLVE GRAPH PARTITIONING WITH GENETIC Algorithms. NEXT, WE PRESENT SOME MULTILEVEL Algorithms TO SOLVE THE PROBLEM. FINALLY, WE REVIEW EXACT METHODS FOR SOLVING GRAPH PARTITIONING PROBLEM.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 141

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    12
  • شماره: 

    46
  • صفحات: 

    203-222
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    57
  • دانلود: 

    4
چکیده: 

سدهای بتنی وزنی پایداری خود را تنها با استفاده از وزن بتنی که در آن ها ریخته شده است تأمین می کنند، بنابراین حداقل سازی وزن آن ها و یا حداقل سازی حجم بتن مصرفی در آن ها هزینه های ناشی از ساخت سد را به طور قابل توجهی کاهش می دهد. هدف از این مطالعه، ارزیابی عملکرد سه الگوریتم فراکاوشی جست­و­جوی هارمونی، الگوریتم اجتماع ذرات و جامعه زنبور های عسل مصنوعی در یافتن مقطع بهینه سدهای بتنی وزنی می باشد. بدین منظور سد کوینا واقع در کشور هند به عنوان مطالعه موردی در نظر گرفته شد. برنامه نویسی در محیط متلب صورت گرفت و هر الگوریتم تحت قیود مقاومت در برابر لغزش، واژگونی و محدوده تنش های مجاز، شش بار برای این مسئله اجرا گردید که در نهایت، یک مقدار به عنوان جواب بهینه انتخاب شد. نتایج نشان دادند که گرچه هر سه الگوریتم نسبت به حالت واقعی جواب بهینه تری می دهند، اما الگوریتم جست­و­جوی هارمونی نسبت به دو الگوریتم دیگر مطلوب ترین جواب را یافته است. در ادامه به منظور بررسی نقش عدم قطعیت­های موجود در طراحی مقطع سد، به طراحی مبتنی بر قابلیت اعتماد بر اساس روش شبیه­سازی مونت کارلو پرداخته شد. نتایج حاصل، ایمنی بالاتر در طراحی سد را نسبت به طراحی بهینه­ بدون اعمال قابلیت اعتماد نشان داد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 57

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 4 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Nazari Sarem Mahdi | Ebrahimabadi Arash

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    21-35
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    16
  • دانلود: 

    0
چکیده: 

Field experience shows that the cutting transportation and hole-cleaning phenomena are essential during the drilling phase. Particularly in directional drilling, when the accumulation of cutting has caused some drilling problems such as drill string sticking, formation failure, slow rate of penetration, drill bit abrasion, and the like. Through the study, a novel method for efficient hole cleaning, considering different parameters such as flow rate, the drill bit nozzles’ flow area, the consistency and flow behavior indices in the same time using PSO and ACO Algorithms were implemented. Moreover, Power Law has been considered for the fluid rheology model. Based on this, the research parameter shows that the PSO algorithm is much more accurate than the ACO algorithm, improving objective function by 50% and 4%, respectively. The performance of each algorithm was evaluated, and the results show that hole cleaning has been significantly improved. The flow rate and the bit nozzle size, which play key roles, were selected as optimization variables. Effective parameters on hole cleaning were evaluated, and the results before and after optimization showed a significant improvement in the model. The PSO and ACO Algorithms have been coded in MATLAB software, and the results are compared to the results of the ant colony. The amount of PV and YP has an inverse effect on the increment of minimum velocity required for cutting transport. Various model analyses reveal that the PSO algorithm is more accurate and robust than the Ant colony algorithm.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    15
  • شماره: 

    2
  • صفحات: 

    259-278
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    3
  • دانلود: 

    0
چکیده: 

Metaheuristic Algorithms mostly consist of some parameters influencing their performance when faced with various optimization problems. Therefore, this paper applies Multi-Stage Parameter Adjustment (MSPA), which employs Extreme Latin Hypercube Sampling (XLHS), Primary Optimizer, and Artificial Neural Networks (ANNs) to a recently developed algorithm called the African Vulture Optimization Algorithm (AVOA) and a well-known one named Particle Swarm Optimization (PSO) for tuning their parameters. The performance of PSO is tested against two engineering and AVOA for two structural optimization problems, and their corresponding results are compared to those of their default versions. The results showed that the employment of MSPA improved the performance of both Metaheuristic Algorithms in all the considered optimization problems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Gholizadeh S. | Gheyratmand C. | Razavi N.

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    13
  • شماره: 

    3
  • صفحات: 

    339-351
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

The main objective of this study is to optimize reinforced concrete (RC) frames in the framework of performance-based design using Metaheuristics. Three improved and efficient Metaheuristics are employed in this work, namely, improved multi-verse (IMV), improved black hole (IBH) and modified newton Metaheuristic algorithm (MNMA). These Metaheuristic Algorithms are applied for performance-based design optimization of 6- and 12-story planar RC frames. The seismic response of the structures is evaluated using pushover analysis during the optimization process. The obtained results show that the IBH outperforms the other Algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button