فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی










متن کامل


نویسندگان: 

Nasiri Leila | Shams Mehdi

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    20
  • شماره: 

    4
  • صفحات: 

    33-46
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    34
  • دانلود: 

    0
چکیده: 

In this note, first the better refinements of Young and its reverse inequalities for scalars are given. Then, several Operator and norm versions according to these inequalities are established.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 34

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

JOKAR Z. | BEHBOODIAN J.

اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    5
  • شماره: 

    1 (S.N. 9)
  • صفحات: 

    1-12
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    436
  • دانلود: 

    0
چکیده: 

The main purpose of this paper is to study a general norm on extension of a Hilbert’s type linear Operator in the continuous and discrete form. In addition to expressing the norm of a Hilbert’s type linear Operator T: L2 (0, ¥) ® L2 (0, ¥), a more general case with l > 0, for the continuous form has been studied. By putting l = 1 a norm of extension of Hilbert’s integral linear Operator is obtained. Similar results have been expressed for series when 0 < l £ 2.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 436

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 1
نویسندگان: 

Raj Kuldip | Choudhary Anu | Mursaleen Mohammad

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    20
  • شماره: 

    1
  • صفحات: 

    19-34
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    46
  • دانلود: 

    0
چکیده: 

In this paper, we determine the upper and lower bounds for the norm of lower triangular matrix Operators on Cesà, ro weighted (p, v)−, fractional difference sequence spaces of modulus functions. We consider the matrix Operators acting between ℓ, p(w) and Cp(v, ω, , Δ, (η, , ℓ, ), F) and identify their bounds and vice-versa. We also investigate the same characteristics for Nö, rlund and weighted mean matrix Operators.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 46

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    19
  • شماره: 

    2
  • صفحات: 

    33-47
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    39
  • دانلود: 

    0
چکیده: 

Let $H(\mathbb{D})$ be the space of all analytic functions on the open unit disc $\mathbb{D}$ in the complex plane $\mathbb{C}$. In this paper, we investigate the boundedness and compactness of the generalized integration Operator$$I_{g,\varphi}^{(n)}(f)(z)=\int_0^z f^{(n)}(\varphi(\xi))g(\xi)\ d\xi,\quad z\in\mathbb{D},$$ from Zygmund space into weighted Dirichlet type space, where $\varphi$ is an analytic self-map of $\mathbb{D}$, $n\in\mathbb{N}$ and $g\in H(\mathbb{D})$. Also we give an estimate for the essential norm of the above Operator.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 39

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    30
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 30

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Pouladi Najafabadi F. | MORADI H.R.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    11
  • شماره: 

    4
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    120
  • دانلود: 

    0
چکیده: 

By taking into account that the computation of the numerical radius is an optimization problem, we prove, in this paper, several refinements of the numerical radius inequalities for Hilbert space Operators. It is shown, among other inequalities, that if A is a bounded linear Operator on a complex Hilbert space, then ω,(A) ≤,1 2 r |A|2 + |A∗, |2 + ∥, |A| |A∗, | + |A∗, | |A|∥, , where ω,(A), ∥, A∥, , and |A| are the numerical radius, the usual Operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier numerical radius inequality due to Kittaneh, namely, ω,(A) ≤,1 2 ,∥, A∥,+ A2 12 , . Some related inequalities are also discussed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 120

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

BAYATI A. | MANJEGANI S.M.

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    18
تعامل: 
  • بازدید: 

    233
  • دانلود: 

    0
چکیده: 

The aim of this article is to discuss Operator monotone and Operator convex functions, introduce some Operator inequalities which are proved by Operator monotone and Operator convex functions.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 233

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    4
تعامل: 
  • بازدید: 

    215
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

IN THIS PAPER, WE INTRODUCE THE NOTIONS OF Operator (A, B, G) -MEAN, RELATIVE Operator (A, B, G) -ENTROPY AND TSALLIS RELATIVE Operator (A, B, G) -ENTROPY. WE GIVE UPPER AND LOWER BOUNDS OF RELATIVE Operator (0, B, G) -ENTROPY AND TSALLIS RELATIVE Operator (A, B, G) -ENTROPY WITH RESPECT TO Operator (A, B, G) -MEAN.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 215

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

MOSLEHIAN M.S. | PECARIC J.E. | PERIC I.

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    35
  • شماره: 

    2
  • صفحات: 

    77-84
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    407
  • دانلود: 

    0
چکیده: 

We establish an Operator extension of the following generalization of Bohr’s inequality, due to M.P. Vasi´c and D.J. Kečkić: ½Sn i=1 zi½r£ (Sni=1 a1i (1-r))r-1 Sni=1 ai ½zi½r (r<1, ziÎC, ai>0.1£i£n).We also present some inequalities related to our noncommutative generalization of Bohr’s inequality.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 407

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

FUJII J.I.

اطلاعات دوره: 
  • سال: 

    2008
  • دوره: 

    2
  • شماره: 

    2
  • صفحات: 

    59-67
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    355
  • دانلود: 

    0
چکیده: 

The Schwarz inequality and Jensen’s one are fundamental in a Hilbert space. Regarding a sesquilinear map B(X, Y ) = Y*X as an Operatorvalued inner product, we discuss Operator versions for the above inequalities and give simple conditions that the equalities hold.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 355

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button