Let $R$ be a commutative ring, $M$ an $R$-module, and $n\geq 1$ an integer. In this paper, we will introduce the concept of $n$-Pure submodules of $M$ as a generalization of Pure submodules and obtain some related results.We say that a submodule $N$ of $M$ is a \emph {$n$-Pure submodule of $M$} if $I_1I_2...I_nN=I_1N \cap I_2N\cap...I_nN\cap (I_1I_2...I_n)M$ for all proper ideals $I_1, I_2,...I_n$ of $R$.