فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی








متن کامل


اطلاعات دوره: 
  • سال: 

    2008
  • دوره: 

    3
  • شماره: 

    2
  • صفحات: 

    64-70
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    259
  • دانلود: 

    0
چکیده: 

Objective: To obtain abnormalities in quantitative Electroencephalography (QEEG) and to observe connectivity between electrodes in children with Asperger disorder.Method: In this study, SPECTROGRAM criteria and coherence values are used as a tool for evaluating QEEG in 15 children with Asperger disorder (10 boys and 5 girls aged between 6 to 11 years old) and in 11 control children (7 boys and 4 girls with the same age range).Results: The evaluation of QEEG using statistical analysis and SPECTROGRAM criteria demonstrates that the relaxed eye-opened condition in gamma frequency band (34-44Hz) has the best distinction level of 96.2% using SPECTROGRAM. The children with Asperger disorder had significant lower SPECTROGRAM criteria values (p<0.01) at Fp1 electrode and lower values (p<0.05) at Fp2 and T6 electrodes. Coherence values at 171 pairs of EEG electrodes indicate that the connectivity at (T4, P4), (T4, Cz), (T4, C4) electrode pairs and (T4, O1) had significant differences (p<0.01) in the two groups in the gamma band.Conclusions: It is shown that gamma frequency band can discriminate 96.2% of the two groups using the SPECTROGRAM criteria. The results demonstrate that there are more abnormalities in the prefrontal and right temporal lobes using SPECTROGRAM criteria and there are more abnormalities in the connectivity of right temporal lobe with the other lobes in the gamma frequency band.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 259

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Khalilabadi Mohammad Reza

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    8
  • شماره: 

    1
  • صفحات: 

    10-15
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    23
  • دانلود: 

    0
چکیده: 

The abstract should include the One of the most exciting topics for researchers over the past few years is detecting underwater acoustic noises. Meanwhile, the complicated nature of the ocean makes this task very challenging. Also, making signals formatted data compatible with machine learning approaches needs much knowledge in signal processing for feature detection. This paper proposed a method to overcome these challenges, which extracts features with Convolutional Neural Network (CNN) and Mel-SPECTROGRAM (converting signal data to images). This method needless knowledge in signal processing and more knowledge in machine learning; because using CNNs find the hidden pattern and knowledge of the data automatically. The proposed approach detected the presence of the ships and categorized them into different kinds of them with 99% accuracy that is a noticeable improvement considering state of the art. The performed CNN models consist of 2 CNN layers for feature extraction and a Dense layer for classification the underwater ship noises.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    9
  • شماره: 

    2
  • صفحات: 

    33-47
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    240
  • دانلود: 

    0
چکیده: 

Recently permutation multimedia ciphers were broken in a chosen-plaintext scenario. That attack models a very resourceful adversary which may not always be the case. To show insecurity of these ciphers, we present a cipher-text only attack on speech permutation ciphers. We show inherent redundancies of speech can pave the path for a successful cipher-text only attack. To that end, regularities of speech are extracted in time and frequency using short time Fourier transform. We show that SPECTROGRAMs of cipher-texts are in fact scrambled puzzles. Then, different techniques including estimation, image processing, and graph theory are fused together in order to create and solve these puzzles. Conducted tests show that the proposed method achieves accuracy of 87: 8% and intelligibility of 92: 9%. These scores are 50: 9% and 34: 6%, respectively, higher than scores of previous method. Finally a novel method, based on moving SPECTROGRAM distance, is proposed that can give accurate estimation of segment length of the scrambler system.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 240

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2008
  • دوره: 

    3
  • شماره: 

    4
  • صفحات: 

    4-10
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    321
  • دانلود: 

    0
چکیده: 

Objective: to evaluate the brain signals in children with autism disorder in many different conditions of quantitative Electroencephalography (qEEG) recordings in order to highlight abnormalities and to characterize this group.Method: In this study, SPECTROGRAM was used as a tool for evaluating qEEG in 15 children with autism disorders (13 boys and 2 girls aged between 6 to 11 years old) and in 11 normal children (7 boys and 4 girts with the same age range). Signals of the two groups were recorded in nine conditions. Results: The recorded signals with the relaxed eye-opened condition in alpha band, those recorded with looking at a stranger's picture condition in beta band, and the ones obtained with children looking at inverted stranger's picture in the same beta band show the best discrimination of 92.3%, 88,9% and 88.9%respectively using SPECTROGRAM. Conclusion: Among the several different EEG recordings, the relaxed eye-opened condition in alpha band had been the best condition for discriminating the two groups using SPECTROGRAM. More abnormalities were observed in the prefrontal lobe and the left brain hemisphere in children with autism disorders.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 321

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Abdzadeh Ziabari Pedram | Veisi Hadi

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    11
  • شماره: 

    1
  • صفحات: 

    119-129
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    47
  • دانلود: 

    0
چکیده: 

Automatic Speaker Verification (ASV) systems have proven to bevulnerable to various types of presentation attacks, among whichLogical Access attacks are manufactured using voiceconversion and text-to-speech methods. In recent years, there has beenloads of work concentrating on synthetic speech detection, and with the arrival of deep learning-based methods and their success in various computer science fields, they have been a prevailing tool for this very task too. Most of the deep neural network-based techniques forsynthetic speech detection have employed the acoustic features basedon Short-Term Fourier Transform (STFT), which are extracted from theraw audio signal. However, lately, it has been discovered that the usageof Constant Q Transform's (CQT) SPECTROGRAM can be a beneficialasset both for performance improvement and processing power andtime reduction of a deep learning-based synthetic speech detection. In this work, we compare the usage of the CQT SPECTROGRAM and some most utilized STFT-based acoustic features. As lateral objectives, we consider improving the model's performance as much as we can using methods such as self-attention and one-class learning. Also, short-duration synthetic speech detection has been one of the lateral goals too. Finally, we see that the CQT SPECTROGRAM-based model not only outperforms the STFT-based acoustic feature extraction methods but also reduces the processing time and resources for detecting genuine speech from fake. Also, the CQT SPECTROGRAM-based model places wellamong the best works done on the LA subset of the ASVspoof 2019 dataset, especially in terms of Equal Error Rate.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 47

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

Scientia Iranica

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    29
  • شماره: 

    4 (Transactions D: Computer Science and Engineering and Electrical Engineering)
  • صفحات: 

    1898-1903
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    36
  • دانلود: 

    0
چکیده: 

Classification of sleep stages is an efficient way of diagnosing sleep problems based on processing the bio-signals (ECG, EEG, EOG, and PPG). The less complex this signal is, the better the detection and processing will be. Feature extraction methods that are done manually are tedious and time-consuming. On the contrary, those features with no hand intervention are called deep features that are usually extracted from images. Analysis of the time-frequency characteristics of non-static bio-signals is of importance since it can provide useful information. The current study aimed to extract the time-frequency image using ECG signal SPECTROGRAM as well as the deep features using the convolutional neural network. After extracting the deep features, sleep stages were classified based on deep transfer learning method. Network training was then performed using one of the ECG signals, and testing was done considering the other ECG signal channel. According to the findings, it is possible to detect sleep stages with acceptable accuracy and different amplitudes of signals. Finally, the accuracy and sensitivity values of the sleep stages were measured as 98. 92% and 96. 52%, respectively.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 36

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    21
  • شماره: 

    75
  • صفحات: 

    1-18
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    73
  • دانلود: 

    24
چکیده: 

تشخیص گوینده، فرآیند تشخیص افراد بر اساس صوت آنها است که در کاربردهای زیادی مورد استفاده قرار می گیرد. اگرچه تاکنون تحقیقات زیادی در زمینه ی تشخیص گوینده صورت گرفته است، اما چالش هایی وجود دارد که هنوز حل نشده اند. در این مقاله به منظور بهبود دقت سیستم های تشخیص گوینده از نتروسافیک و شبکه های عصبی کانولوشنال بهره گرفته شده است. در روش پیشنهادی، ابتدا اسپکتروگرام سیگنال صوتی تشکیل می گردد سپس اسپکتروگرام به فضای نتروسافیک منتقل می شود. در مرحله ی بعد عملگرهای بهبود بتا به مجموعه های نتروسافیک اعمال می شود و این عملیات تا ثابت شدن آنتروپی مجموعه های نتروسافیک تکرار می گردد. در نهایت یک مدل شبکه ی عصبی کانولوشنال برای طبقه بندی هیستوگرام پیشنهاد می شود. برای ارزیابی و تحلیل روش پیشنهادی از دو پایگاه داده ی Aurora2 و TIMIT استفاده شده است. روش پیشنهادی روی پایگاه داده ی Aurora2 به دقت 79/93 درصد و روی پایگاه داده ی TIMIT به دقت 24/95 درصد دست یافته است که در مقایسه با روش های رقیب عملکرد بهتری داشته است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 73

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 24 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    9
  • شماره: 

    1
  • صفحات: 

    19-29
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    110
  • دانلود: 

    0
چکیده: 

متن کامل این مقاله به زبان انگلیسی می باشد. لطفا برای مشاهده متن کامل مقاله به بخش انگلیسی مراجعه فرمایید.لطفا برای مشاهده متن کامل این مقاله اینجا را کلیک کنید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 110

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    19
  • شماره: 

    1
  • صفحات: 

    59-64
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    389
  • دانلود: 

    76
چکیده: 

در این مقاله یک روش جدید برای تفکیک کور منابع گفتار دوکاناله، بدون نیاز به دانش قبلی در مورد منابع گفتار آمده است. در روش پیشنهادی، با وزن دادن به طیف سیگنال ترکیب شده بر اساس فاصله منابع گفتار با میکروفون، تفکیک منابع گفتار انجام می شود. بنابراین ابتدا با تشکیل اسپکتوگرام زاویه ای توسط تابع همبستگی متقابل تعمیم یافته، منابع گفتار موجود در سیگنال ترکیب شده مکان یابی می شوند. سپس با توجه به موقعیت مکانی منابع از نظر فاصله با میکروفون ها، اندازه طیف سیگنال ترکیب شده، وزن دهی می شود. با ضرب اندازه طیف وزن داده شده در مقادیر حاصل از اسپکتوگرام زاویه ای و مقایسه آنها با هم، برای هر منبع یک نقاب باینری ساخته می شود. با اعمال نقاب باینری به اندازه طیف سیگنال ترکیب شده، منابع گفتار موجود در آن از هم جدا می شوند. این روش روی داده های پایگاه داده SiSEC آزمایش و از ابزار سنجش و معیارهای موجود در این پایگاه، برای ارزیابی استفاده شده است. نتایج نشان می دهد که روش پیشنهادی، از جهت معیارهای موجود در پایگاه مذکور با روش های رقیب قابل مقایسه بوده و پیچیدگی محاسباتی کمتری دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 389

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 76 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1391
  • دوره: 

    6
  • شماره: 

    4
  • صفحات: 

    85-95
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    904
  • دانلود: 

    213
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 904

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 213 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button