فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

Rafiee A. | Moradi P. | Ghaderzadeh A.

اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    51
  • شماره: 

    4
  • صفحات: 

    443-454
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    187
  • دانلود: 

    37
چکیده: 

Multi-label classification aims at assigning more than one label to each instance. Many real-world multi-label classification tasks are high dimensional, leading to reduced performance of traditional classifiers. Feature selection is a common approach to tackle this issue by choosing prominent features. Multi-label feature selection is an NP-hard approach, and so far, some swarm intelligence-based strategies and have been proposed to find a near optimal solution within a reasonable time. In this paper, a hybrid intelligence algorithm based on the binary algorithm of particle swarm optimization and a novel local Search strategy has been proposed to select a set of prominent features. To this aim, features are divided into two categories based on the extension rate and the relationship between the output and the local Search strategy to increase the convergence speed. The first group features have more similarity to class and less similarity to other features, and the second is redundant and less relevant features. Accordingly, a local operator is added to the particle swarm optimization algorithm to reduce redundant features and keep relevant ones among each solution. The aim of this operator leads to enhance the convergence speed of the proposed algorithm compared to other algorithms presented in this field. Evaluation of the proposed solution and the proposed statistical test shows that the proposed approach improves different classification criteria of multi-label classification and outperforms other methods in most cases. Also in cases where achieving higher accuracy is more important than time, it is more appropriate to use this method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 187

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 37 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    65-81
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    22
  • دانلود: 

    0
چکیده: 

This study focuses on the investigation of intelligent form-finding and vibration analysis of a triangular polyhedral tensegrity that is enclosed within a sphere and subjected to external loads. The nonlinear dynamic equations of the system are derived using the Lagrangian approach and the finite element method. The proposed form-finding approach, which is based on a basic genetic algorithm, can determine regular or irregular tensegrity shapes without dimensional constraints. Stable tensegrity structures are generated from random configurations and based on defined constraints (nodes located on the sphere, parallelism, and area of upper and lower surfaces), and shape finding is performed using the fitness function of the genetic algorithm and multi-objective optimization goals. The genetic algorithm's efficacy in determining the shape of structures with unpredictable configurations is evaluated in two distinct scenarios: one involving a known connection matrix and the other involving fixed or random member positions (struts and cables). The shapes obtained from the algorithm suggested in this study are validated using the force density approach, and their vibration characteristics are examined. The findings of the comparative study demonstrate the efficacy of the proposed methodology in determining the vibrational behavior of tensegrity structures through the utilization of intelligent shape seeking techniques.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 22

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Doraghinejad Mohammad | NEZAMABADIPOUR HOSSEIN | Hashempour Sadeghian Armindokht | Maghfoori Malihe

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    4
تعامل: 
  • بازدید: 

    162
  • دانلود: 

    0
چکیده: 

NOWADAYS, UTILIZING HEURISTIC algorithmS IS HIGHLY APPRECIATED IN SOLVING OPTIMIZATION PROBLEMS. THE FUNDAMENTAL OF THESE algorithmS ARE INSPIRED BY NATURE. THE GRAVITATIONAL Search algorithm (GSA) IS A NOVEL HEURISTIC Search algorithm WHICH IS INVENTED BY USING LAW OF GRAVITY AND MASS INTERACTIONS. IN THIS PAPER, A NEW OPERATOR IS PRESENTED WHICH IS CALLED "THE BLACK HOLE". THIS OPERATOR IS INSPIRED BY THE CONCEPT OF AN ASTRONOMY PHENOMENON. BY ADDING THE BLACK HOLE OPERATOR, THE EXPLOITATION OF THE GSA IS IMPROVED. THE PROPOSED algorithm IS EVALUATED BY SEVEN STANDARD UNIMODAL BENCHMARKS. THE RESULTS OBTAINED DEMONSTRATE BETTER PERFORMANCE OF THE PROPOSED algorithm IN COMPARISON WITH THOSE OF THE STANDARD GSA AND OTHER VERSION OF GSA WHICH IS EQUIPPED WITH THE DISRUPTION OPERATOR.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 162

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

CHAU L.P. | ZHU C.

اطلاعات دوره: 
  • سال: 

    2003
  • دوره: 

    83
  • شماره: 

    3
  • صفحات: 

    671-675
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    146
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 146

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    1
تعامل: 
  • بازدید: 

    149
  • دانلود: 

    0
چکیده: 

GROWTH OF SOCIAL NETWORK ANALYSIS AS AN ACADEMIC FIELD HAS COINCIDED WITH AN EXPLOSION IN POPULAR INTEREST IN SOCIAL NETWORKS. EXPERT FINDING IS ONE OF THE MOST IMPORTANT SUBJECTS FOR MINING FROM SOCIAL NETWORKS SearchING FOR THE RIGHT PERSONS WITH THE APPROPRIATE SKILLS AND KNOWLEDGE. THE RLS algorithm EXPLOITED Q-LEARNING AND REFERRALS TO FIND EXPERTS IN SOCIAL NETWORK TO Search EXPERT IN SOCIAL NETWORK. COMPARISON OF RLS WITH SIMPLE Search algorithm, REFERRAL algorithm AND SNPAGERANK SHOWS INCREASE IN BOTH PRECISION AND RECALL. RLS LEARNS TO FIND NEW EXPERTS AS OLD EXPERTS SUBSTITUTE THEIR ROLE WITH NEW ONES DUE TO CHANGES IN SOCIAL NETWORK ENVIRONMENT.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 149

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    1397
  • دوره: 

    16
  • شماره: 

    2
  • صفحات: 

    121-130
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1213
  • دانلود: 

    310
چکیده: 

در این مقاله الگوریتم بهینه سازی جستجوی ابرکروی با استفاده از نظریه آشوب ارائه می شود که ضعف الگوریتم بهینه سازی جستجوی ابرکروی استاندارد، یعنی سرعت همگرایی و افزایش تعداد تکرار اجرای الگوریتم برای رسیدن به جواب بهینه را برطرف می نماید. در الگوریتم پیشنهادی، در گام ایجاد ذرات و گام جستجو، مقادیر حاصل از دو نگاشت چبیشف و لیبوویچ، جایگزین مقادیر تصادفی موجود در الگوریتم استاندارد می شود که این امر باعث بهبود نتایج حاصل از اجرای الگوریتم شده و انحراف معیار نتایج را کاهش می دهد. نتایج شبیه سازی بر روی توابع محک استاندارد نشان می دهد که الگوریتم پیشنهادی ضمن برخورداری از همگرایی سریع تر، دقت بیشتری نیز در یافتن جواب بهینه نسبت به الگوریتم جستجوی ابرکروی استاندارد و همچنین الگوریتم های بهینه سازی دیگر نظیر ژنتیک، ازدحام ذرات و الگوریتم جستجوی هارمونی دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1213

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 310 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 1
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    16
  • شماره: 

    3
  • صفحات: 

    147-155
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1920
  • دانلود: 

    445
چکیده: 

دراین مقاله، یک الگوریتم بهینه سازی با استفاده از ترکیب الگوریتم ژنتیک و جستجوی ابرکروی مبتنی بر نظریه آشوب ارائه می شود که در آن به منظور افزایش کارایی در جستجوی جواب بهینه علاوه بر نظریه آشوب از عملگرهای ژنتیکی نیز استفاده شده است. این امر نه تنها منجر به قطعی بودن نتایج و کاهش انحراف معیار می شود، بلکه ضعف الگوریتم بهینه سازی جستجوی ابرکروی مبتنی بر نظریه آشوب یعنی سرعت همگرایی و عملکرد ضعیف در برخی از توابع محک را برطرف می نماید. نتایج حاصل از آزمایشات بیانگر همگرایی سریعتر و دقت بیشتر الگوریتم پیشنهادی در یافتن جواب بهینه نسبت به الگوریتم جستجوی ابرکروی استاندارد، الگوریتم جستجوی ابرکروی مبتنی بر نظریه آشوب و همچنین الگوریتم های بهینه سازی دیگر نظیر ژنتیک، ازدحام ذرات و جستجوی هارمونی است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1920

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 445 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

WANG Y.Y. | LI L.J.

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    37-52
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    308
  • دانلود: 

    0
چکیده: 

This article introduces two swarm intelligent algorithms, a group Search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group Search-artificial fish swarm algorithm (GS-AFSA). This algorithm has been applied to three different discrete truss optimization problems. The optimization results are compared with those obtained using the standard GSO, the AFSA and the quick group Search optimizer (QGSO). The proposed GS-AFSA eliminated the shortcomings of GSO regarding falling into the local optimum by taking advantage of AFSA’s stable convergence characteristics and achieving a better convergence rate and convergence accuracy than the GSO and the AFSA. Furthermore, the GS-AFSA has a superior convergence accuracy compared to the QGSO, all while solving a complicated structural optimization problem containing numerous design variables.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 308

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

NIKBAKHT HAMED | Mirvaziri Hamid

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    1
تعامل: 
  • بازدید: 

    112
  • دانلود: 

    0
چکیده: 

DATA CLUSTERING IS A CRUCIAL TECHNIQUE IN DATA MINING THAT IS USED IN MANY APPLICATIONS. IN THIS PAPER, A NEW CLUSTERING algorithm based ON GRAVITATIONAL Search algorithm (GSA) AND GENETIC OPERATORS IS PROPOSED. THE LOCAL Search SOLUTION IS UTILIZED THROW THE GLOBAL Search TO AVOID GETTING STOCK IN LOCAL OPTIMA. THE GSA IS A NEW APPROACH TO SOLVE OPTIMIZATION PROBLEM THAT INSPIRED BY NEWTONIAN LAW OF GRAVITY. WE COMPARED THE PERFORMANCES OF THE PROPOSED METHOD WITH SOME WELL-KNOWN CLUSTERING algorithmS ON FIVE BENCHMARK DATASET FROM UCI MACHINE LEARNING REPOSITORY. THE EXPERIMENTAL RESULTS SHOW THAT OUR APPROACH OUTPERFORMS OTHER algorithmS AND HAS BETTER SOLUTION IN ALL DATASETS. ...

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 112

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    13
  • شماره: 

    3
  • صفحات: 

    107-116
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    210
  • دانلود: 

    0
چکیده: 

Optimization algorithms inspired by nature as intelligent optimization methods with classical methods have demonstrated significant success. Some of these techniques are genetic algorithms, inspired by biological evolution of humans and other creatures) ant colony optimization and simulated annealing method (inspired by the refrigeration process metals). The methods for solving optimization problems in many different areas such as determining the optimal course of their work, designing optimal control for industrial processes, solving industrial engineering major issues such as the optimal layout design for industrial units, problem solving, and queuing in the design of intelligent agents have been used. This paper introduces a new algorithm for optimization, which is not a natural phenomenon, but a phenomenon inspired teaching-human. It is entitled Education System algorithm (ESA). Results demonstrate this method is better than other method in this area.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 210

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button