فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

DEHGHANI R. | HOSSEINI M.M.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    13
  • شماره: 

    1
  • صفحات: 

    103-116
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    185
  • دانلود: 

    0
چکیده: 

We make some ecient modications on the modied secant equation proposed by Zhangand Xu (2001). Then we introduce modied BFGS method using propose secant equation, and obtain some attractive results in theory and practice. We establish the global con-vergence property of the proposed method without convexity assumption on the objectivefunction. Numerical results on some testing problems from CUTEr collection show the pri-ority of the proposed method to some existing modied secant methods in practice.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 185

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    19
  • شماره: 

    1 (پیاپی 72)
  • صفحات: 

    1-16
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    193
  • دانلود: 

    66
چکیده: 

در این مقاله به معرفی یک روش گرادیان مزدوج کارآمد پرداخته می شود. این روش از حل یک مساله بهینه سازی که به کمک ویژگی های گرادیان مزدوج خطی و همچنین یک شرط سکانت اصلاح شده به دست آمده، حاصل می شود. پارامتر گرادیان مزدوج معرفی شده علاوه بر مقادیر گرادیان، در هر تکرار از مقادیر تابع نیز استفاده می کند. روش ارایه شده با فرضیات مناسب خاصیت همگرایی سراسری دارد. در انتها با استفاده از مسایل کتابخانه CUTEr به مقایسه روش با برخی روش های شناخته شده موجود می پردازیم و کارایی روش را ارزیابی می کنیم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 193

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 66 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    12
  • شماره: 

    Special Issue
  • صفحات: 

    893-901
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    29
  • دانلود: 

    0
چکیده: 

In this paper, we have investigated a new spectral Quasi-Newton (QN) algorithm. New search directions of the proposed algorithm increase its stability and increase the arrival to the optimum solution with a lowest cost value and our numerical applications on the standard Firefly Algorithm (FA)and the new proposed algorithm are powerful as in meta-heuristic field. Our new proposed algorithm has quite common uses in several sciences and engineering problems. Finally, our numerical results show that the proposed technique is the best and its accuracy higher than the accuracy of the standard FA. These numerical results are compared using statistical analysis to evaluate the efficiency and the robustness of new proposed algorithm.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    16
  • شماره: 

    1
  • صفحات: 

    15-33
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    129
  • دانلود: 

    0
چکیده: 

In this paper, we present a nonmonotone trust-region algorithm for Unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh & Amini [1] and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some prior successful iterates. For iterates far away from the optimizer, we give a very strong nonmonotone strategy. In the vicinity of the optimizer, we have a weaker nonmonotone strategy. It leads to a medium nonmonotone strategy when iterates are not far away from or close to the optimizer. Theoretical analysis indicates that the new approach converges globally to a first-order critical point under classical assumptions. In addition, the local convergence is studied. Extensive numerical experiments for Unconstrained optimization problems are reported showing that the new algorithm is robust and efficient.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 129

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    12
  • شماره: 

    4
  • صفحات: 

    115-135
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    310
  • دانلود: 

    0
چکیده: 

Iterative methods for optimization can be classified into two categories: line search methods and trust region methods. In this paper, we propose a modified regularized Newton method for minimizing nonconvex functions whose Hessian matrix may be singular without line search. The proposed method is proved to converge globally if the Gradient and Hessian of the objective function are Lipschitz continuous. Moreover, we report numerical results that show that the proposed algorithm is competitive with the existing methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 310

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    42
  • شماره: 

    4
  • صفحات: 

    819-837
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    330
  • دانلود: 

    0
چکیده: 

This study concerns with a trust-region-based method for solving Unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula to-gether with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newton for-mulas helps to handle large-scale problems. Theoretical analysis indicates that the new approach preserves the global convergence to a first-order stationary point under classical assumptions. Moreover, the superlinear and the quadratic convergence rates are also established under suitable conditions. Preliminary numerical experiments show the effectiveness of the proposed approach for solving large-scale Unconstrained optimization problems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 330

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Bidabadi Narges

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    6
  • شماره: 

    26
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    84
  • دانلود: 

    0
چکیده: 

In this paper, we solve Unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value of this matrix is not greater than the number of variables of the problem. Then, using this double parameter scaled quasi Newton formula, an explicit formula for calculating the step length in the steepest descent method is presented and therefore, this method does not require the use of approximate methods for calculating step length. The numerical results obtained from the implementation of the algorithm in MATLAB software environment are presented for some optimization problems. These results show the efficiency of the proposed method in comparison with other existing methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 84

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Souli C. | Ziadi R. | Lakhdari I. | Leulmi A.

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    15
  • شماره: 

    1
  • صفحات: 

    99-123
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    3
  • دانلود: 

    0
چکیده: 

The conjugate gradient (CG) method is an optimization technique known for its rapid convergence; it has blossomed into significant developments and applications. Numerous variations of CG methods have emerged to en-hance computational efficiency and address real-world challenges. In this work, a novel conjugate gradient method is introduced to solve nonlinear Unconstrained optimization problems. Based on the combination of PRP (Polak–Ribière–Polyak), HRM (Hamoda–Rivaie–Mamat) and NMFR (new modified Fletcher–Reeves) algorithms, our method produces a descent di-rection without depending on any line search. Moreover, it enjoys global convergence under mild assumptions and is applied successfully on various standard test problems as well as image processing. The numerical results indicate that the proposed method outperforms several existing methods in terms of efficiency.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    2
  • صفحات: 

    301-317
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    16
  • دانلود: 

    0
چکیده: 

This paper presents a new hybrid conjugate gradient method for solving  nonlinear Unconstrained optimization problems; it is based on a combination of $RMIL$  (Rivaie-Mustafa-Ismail-Leong)  and $hSM$  (hybrid Sulaiman- Mohammed) methods. The proposed algorithm enjoys the sufficient descent condition without depending on any line search; moreover, it is globally convergent under the usual and strong Wolfe line search assumptions.  The performance of the algorithm is demonstrated through numerical experiments on a set of 100 test functions from [1] and four image restoration problems with two noise levels. The numerical comparisons with four existing methods show that the proposed method is promising and effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Mirzaie Seyed Hamzeh | Ashrafi Ali

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    13
  • شماره: 

    1
  • صفحات: 

    219-233
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    8
  • دانلود: 

    0
چکیده: 

This paper concerns an efficient trust region framework that exploits a new non-monotone line search method. The new algorithm avoids the sudden increase of the objective function values in the non-monotone trust region method. Instead of resolving the trust region subproblem whenever the trial step is rejected, the proposed algorithm employs an Armijo-type line search method in the direction of the rejected trial step to construct a new point. Global and superlinear properties are preserved under appropriate conditions. Comparative numerical experiments depict the efficiency and robustness of the new algorithm using the Dolan-More performance profiles.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button