فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی







متن کامل


اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    22
  • شماره: 

    4
  • صفحات: 

    287-294
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

امروزه موتورهای جستجو دروازه ورود به وب هستند. با افزایش محبوبیت وب، تلاش برای بهره‌برداری تجاری، اجتماعی و سیاسی از وب نیز افزایش یافته و در نتیجه تشخیص یک محتوای خوب از اسپم برای موتورهای جستجو دشوار شده است. مفهوم اسپم وب نخستین بار در سال 1996 معرفی شد و خیلی زود به عنوان یکی از چالش‌های کلیدی برای صنعت موتور جستجو شناخته شد. پدیده اسپم اساساً به این دلیل اتفاق می‌افتد که بخش قابل توجهی از مراجعات به صفحه وب از موتور جستجو می‌آیند و کاربران تمایل به بررسی اولین نتایج جستجو دارند. هدف از شناسایی صفحات اسپم این است که این صفحات با استفاده از استراتژی‌های فریب قادر به کسب رتبه بالا نباشند. تلاش ما ارائه روشی مؤثر در شناسایی صفحات اسپم و در نتیجه کاهش حضور اسپم در نتایج اول جستجوست. در این مقاله دو روش برای مقابله با اسپم وب پیشنهاد شده است. روش اول به نام XGspam صفحات اسپم را بر اساس الگوریتم یادگیری Xgboost با دقت 27/94% شناسایی می‌کند. در روش دوم به نام XGSspam راهکاری برای چالش نامتوازن‌بودن داده‌های وب با استفاده از ترکیب الگوریتم بیش‌نمونه‌برداری SMOTE با مدل دسته‌بندی Xgboost ارائه شده که به دقت 44/95% در شناسایی صفحات اسپم می‌رسد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

بختیاری سعید

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    3
  • شماره: 

    1
  • صفحات: 

    55-68
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    89
  • دانلود: 

    14
چکیده: 

یکی از راه های تامین امنیت، تشخیص بدافزار در سامانه های کامپیوتری توسط روش های شناسایی بدافزار می باشد. از آنجایی که این امر هزینه مالی، زمانی و انسانی زیادی را به همراه دارد، تحقیق پیش رو در صدد بوده تا با تکیه بر استخراج اطلاعات مفید از داده های خام بدون نیاز به اجرای نمونه و کلاسه بندی بر اساس این ویژگی ها، هزینه های ذکر شده را کاهش دهد. در این راستا برای هر نمونه بدافزار مجموعه ای از ویژگی های مبتنی بر محتوا با استفاده از مکانیسم های پیشرفته محاسبه شده است. همچنین، ویژگی های آماری قدرتمندی به عنوان مکملی برای ویژگی های مبتنی بر محتوا در نظر گرفته شده اند. لذا، باتوجه به یافته های تحقیق صورت گرفته بر روی دیتاست بدافزار مایکروسافت با نام BIG 2015، یک کلاسه کننده مقرون به صرفه و کاملا خودکار ارائه گردیده است. در روش ارائه شده با استفاده از الگوریتم تقویت گرادیان حداکثری (Xgboost) و جنگل تصادفی، میزان دقت کلاسه کننده 81/99 بدست آمده است و خطای پیش بینی کننده به میزان 00470/0 تعیین گردیده است. یافته های این تحقیق نشان می دهد، دست آورد این تحقیق، تعیین برتری ویژگی های تکرار عملگرها، تکرار شناسه سگمنت ها، تصاویر استخراج شده از بد افزارها نسبت به دیگر ویژگی ها میباشد. در نتیجه، با بهره گیری از این تحقیق در سامانه های IDS، IPS و آنتی ویروس های بومی، می توان دقت تشخیص بدافزارها را افزایش داده و همچنین میزان خطای تشخیص بدافزارها و جرایم رایانه ای را کاهش داد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 89

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 14 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    23
  • شماره: 

    1
  • صفحات: 

    137-137
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    17
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 17

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    31
  • شماره: 

    4
  • صفحات: 

    1292-1302
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    26
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 26

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

مهندسی دریا

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    18
  • شماره: 

    36
  • صفحات: 

    24-31
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    16
  • دانلود: 

    0
چکیده: 

1ارزیابی استحکام نهایی ورق های تقویت شده تشکیل دهنده سازه کشتی، اولین مرحله در ارزیابی استحکام نهایی آن است. باگذشت زمان و افزایش عمر سازه، خرابی هایی نظیر ایجاد ترک سبب کاهش ظرفیت باربری سازه کشتی می شوند. هدف اصلی این مقاله ارائه روشی مبتنی بر یادگیری ماشین با استفاده از الگوریتم برای محاسبه استحکام نهایی فشاری ورق های تقویت شده با خرابی ترک با استفاده از نتایج تحلیل های متعدد المان محدود است. برای دستیابی به بهترین نتایج ممکن از الگوریتم Xgboost، بخشی هایپرپارامترهای موجود در این الگوریتم با استفاده از روش بهینه سازی بیزین، بهینه شده است. نتایج حاصل از این روش نشان می دهد که دقت استفاده از الگوریتم بهینه شده Xgboostبسیار بالاتر از روش های متداول بر مبنای رگرسیون خطی است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    13
  • شماره: 

    -
  • صفحات: 

    6-10
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    101
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 101

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    14
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    17
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 17

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    31
  • شماره: 

    6
  • صفحات: 

    3360-3379
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    10
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    21
  • شماره: 

    1
  • صفحات: 

    237-237
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    18
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 18

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    12
  • شماره: 

    45
  • صفحات: 

    47-66
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    53
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

1پیش بینی تقاضای محصولات زنجیره تأمین برای تعیین استراتژی ها و تصمیم گیری ها موضوعی بسیار با اهمیت و پرچالش است. با افزایش تنوع و تعداد محصولات، این چالش ها نیز افزایش می یابد. ارائه چارچوب ها و روش هایی که با وجود تنوع محصولی، تفاوت در کاربردها و ویژگی ها و حجم داده های مختلف، از انعطاف پذیری، دقت و مزیت های لازم برای پیش بینی همه دسته های محصولی برخوردار باشد، برای مدیران حیاتی است. در این راستا، دو مدل یادگیری با نظارت، Xgboost Regressor (XGBR) و Gradient Boosting Regressor (GBR)، بر روی مجموعه داده های Global Superstore، در سایت Kaggle پیاده‎سازی شده است. این مجموعه داده شامل 3788 محصول در سه Category محصولی متنوع، هفده Sub Category و51،290 سفارش است. حجم داده های محدود محصولات سبب می گردد پیش بینی بسیاری از محصولات و کسب نتیجه مناسب از روش ها میسر و مفید نگردد. با توجه به اینکه در این تحقیق تجربی هدف پیش بینی تقاضا، بکارگیری در تصمیمات استراتژیک است، رویکردی تجمیع محصولی برای این مسئله پیشنهاد شده که با توجه به مشابهت در محصولات Sub Categoryها پیش بینی آنها به صورت تفکیک شده صورت گیرد. به منظور بررسی اثر میزان داده بر عملکرد مدل ها، داده های مجموعه داده با استفاده از تکنیک Augmentation Data افزایش یافته و با اجرای مجدد مدل ها، نتایج پیش بینی دو مدل با هم مقایسه شده اند. براساس ارزیابی نتایج پیش بینی با داده های افزایش یافته با دو معیار MSE و MAE، مدل XGBR در کمترین مقدار به ترتیب به 12/0 و 10/0، و مدل GBR نیز به مقادیر 13/0 و 15/0 دست یافته است. همچنین، نتیجه معیار D2 Score در مدل XGBR در بیشترین مقدار 97/0 و در مدل GBR مقدار 96/0 است. با افزایش داده ها، مقادیر معیارهای اندازه گیری خطای به صورت چشمگیری و تا بیش از 80 درصد کاهش یافته و در داده های با حجم بیشتر، XGBR برتری نسبی دارد. چارچوب و مدل های پیشنهادی می تواند در صنایع با مسائل مشابه در سطح استراتژی استفاده شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button