فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    44
تعامل: 
  • بازدید: 

    167
  • دانلود: 

    0
چکیده: 

BY P-POWER (OR PARTIAL P -POWER) TRANSFORMATION, THE LAGRANGIAN FUNCTION IN NONCONVEX optimization PROBLEM BECOMES LOCALLY CONVEX. IN THIS PAPER, WE PRESENT A NEURAL NETWORK BASED ON AN NCP FUNCTION FOR SOLVING NONCONVEX optimization PROBLEM. ONE OF THE IMPORTANT FEATURES OF THIS NEURAL NETWORK IS THE ONE-TO-ONE CORRESPONDENCE BETWEEN ITS EQUILIBRIA AND KKT POINTS OF THE non-convex optimization PROBLEM; IN THE OTHER WORDS, THE NEURAL NET-WORK IS PROVED TO BE STABLE AND CONVERGENT TO AN OPTIMAL SOLUTION OF THE ORIGINAL PROBLEM. FINALLY, EXAMPLES ARE PROVIDED TO SHOW THE APPLICABILITY OF THE PROPOSED NEURAL NETWORK.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 167

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    7
  • شماره: 

    1
  • صفحات: 

    69-85
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    185
  • دانلود: 

    0
چکیده: 

Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modi cation of the Newton method to solve uncon-strained optimization problems is presented. The significant merit of the proposed method is that the step length k at each iteration is equal to 1. Additionally, the convergence analysis for this iterative algorithm is established under suitable conditions. Some illustrative examples are provided to show the validity and applicability of the presented method and a comparison is made with several other existing methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 185

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

MAHDAVI AMIRI N. | YOUSEFPOUR R.

اطلاعات دوره: 
  • سال: 

    2011
  • دوره: 

    37
  • شماره: 

    1
  • صفحات: 

    171-198
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    421
  • دانلود: 

    0
چکیده: 

We present an effective algorithm for minimization of locally nonconvex Lipschitz functions based on mollifier functions approximating the Clarke generalized gradient. To this aim, first we approximate the Clarke generalized gradient by mollifier subgradients.To construct this approximation, we use a set of averaged functions gradients. Then, we show that the convex hull of this set serves as a good approximation for the Clarke generalized gradient.Using this approximation of the Clarke generalized gradient, we establish an algorithm for minimization of locally Lipschitz functions. Based on mollifier subgradient approximation, we propose a dynamic algorithm for finding a direction satisfying the Armijo condition without needing many subgradient evaluations. We prove that the search direction procedure terminates after finitely many iterations and show how to reduce the objective function value in the obtained search direction. We also prove that the first order optimality conditions are satisfied for any accumulation point of the sequence constructed by the algorithm. Finally, we implement our algorithm with MATLAB codes and approximate averaged functions gradients by the Monte-Carlo method. The numerical results show that our algorithm is effectively more efficient and also more robust than the GS algorithm, currently perceived to be a competitive algorithm for minimization of nonconvex Lipschitz functions.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 421

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

GHORBANI N. | VAKILI S. | BABAEI E.

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    24
  • شماره: 

    -
  • صفحات: 

    1120-1133
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    106
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 106

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

عرب الجدیدی نرگس

اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    4
  • شماره: 

    3
  • صفحات: 

    197-208
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    442
  • دانلود: 

    197
چکیده: 

دراین مقاله، روشی برای تعیین مجموعه جواب های کلاسی از مسائل بهینه سازی غیرمحدب را از طریق مسئله ی دوگان متناظرشان ارائه می دهیم. درواقع مسئله ی بهینه سازی مقیدی که درنظر می گیریم دارای توابع محدب نما و موضعاً لیپ شیتز هستند که لزومامحدب و هموار نیستند و دسته ی وسیعی از توابع غیرمحدب غیرهموار را شامل می شوند. در روش پیشنهادی برای مشخصه سازی مجموعه جواب های مسئله ی اولیه، یک مسئله ی دوگان فرمول بندی می شود که ترکیبی از نوع ولف و نوع موند-ویر می باشد. در ابتدا برخی از ویژگی های تابع لاگرانژی متناظر با این مسائل را بررسی و سپس اثبات مشخصه سازی مجموعه جواب های آن ها را بیان خواهیم کرد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 442

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 197 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Hoseinpoor Narges | Ghaznavi Mehrdad

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    15
  • شماره: 

    5
  • صفحات: 

    239-245
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    10
  • دانلود: 

    0
چکیده: 

In the presented paper, we investigate efficient solutions to optimization problems with multiple criteria and bounded trade-offs. A nonlinear optimization problem to find the relationships between the upper bound for trade-offs and objective functions is presented. Due to this problem, we determine some properly efficient points that are closer to the ideal point. To this end,  we apply the extended form of the generalized Tchebycheff norm. Note that all the presented results work for general problems and no convexity assumption is needed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

KAZMI KALEEM RAZA

نشریه: 

MATHEMATICAL SCIENCES

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    7
  • شماره: 

    -
  • صفحات: 

    1-5
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    318
  • دانلود: 

    0
چکیده: 

In this paper, we propose a split nonconvex variational inequality problem which is a natural extension of split convex variational inequality problem in two different Hilbert spaces. Relying on the prox-regularity notion, we introduce and establish the convergence of an iterative method for the new split nonconvex variational inequality problem. Further, we also establish the convergence of an iterative method for the split convex variational inequality problem. The results presented in this paper are new and different form the previously known results for nonconvex (convex) variational inequality problems. These results also generalize, unify, and improve the previously known results of this area.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 318

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 4
نویسندگان: 

NOOR M.A.

نشریه: 

optimization LETTERS

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    3
  • شماره: 

    3
  • صفحات: 

    411-418
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    125
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 125

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

AGRELL P.J. | TIND J.

اطلاعات دوره: 
  • سال: 

    2001
  • دوره: 

    16
  • شماره: 

    2
  • صفحات: 

    129-147
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    122
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 122

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

BAGIROV A.M.

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    1-14
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    303
  • دانلود: 

    0
چکیده: 

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well-known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 303

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button