مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

1,868
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

742
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

تشخیص حملات سایبری پیشرفته با استفاده از مدل سازی رفتاری مبتنی بر پردازش زبان طبیعی

صفحات

 صفحه شروع 141 | صفحه پایان 151

چکیده

 رشته حملات پیچیده و ماندگار نفوذ به شبکه از مراحل نامحسوس و مخفی متعددی تشکیل شده اند. یکی از دلایل ناکارآمدی سامانه های تشخیص نفوذ در برابر این حملات, استفاده از سازوکار دفاعی مبتنی بر آنالیز ترافیک شبکه ای سطح پایین است که در آن به روابط پنهان بین هشدارها توجه نمی شود. فرض ما این است که اطلاعات ساختاری پنهان در داده های ترافیکی وجود دارند و ما می خواهیم در ترافیک شبکه ای قواعدی مانند قواعد زبان تعریف کنیم و آن را برای توصیف الگوهای فعالیت های شبکه ای بدخواهانه به کار بگیریم. به این وسیله می توانیم مسئله کشف الگوهای سوء استفاده و ناهنجاری را همانند مسئله یادگیری ساختارهای نحوی و قطعات مفهومی "زبان شبکه" حل کنیم. در این مقاله برای مدل سازی در مرحله تولید دنباله ها برای اولین بار در حوزه سایبری از یک خوشه بندی جدید به عنوان خوشه بندی MD_DBSCAN که یکی از انواع بهبودیافته خوشه بندی DBSCAN است, استفاده شده است. علاوه بر این, از یک الگوریتم حریصانه با الهام از القاء گرامر در پردازش زبان طبیعی استفاده شده تا با ادغام فعالیت های سطح پایین بتوانیم فعالیت های سطح بالا را کشف کنیم و روابط بین فعالیت های سطوح مختلف را تعریف کنیم. در بخشی از الگوریتم پیشنهادی برای کشف فعالیت های سطح بالا, برای اولین بار معیار شباهت ویرایش در خوشه بندی سلسله مراتبی به معیارهای موجود در الگوریتم پایه اضافه شده است. نتایج نشان می دهد دقت تشخیص در فعالیت های سطح بالا نسبت به فعالیت های سطح پایین با توجه به نمودار ROC حدود 30 % بیشتر است. همچنین, با تنظیم بهترین حد آستانه در الگوریتم تشخیص حملات, با درنظرگرفتن معیار F1, برای لغات سطوح یک تا سه به ترتیب به نتایج 3/72 و 2/96 و 4/96 در پنجره پیش بینی با اندازه سه رسیده ایم که به طورکلی حدود 2/. نسبت به الگوریتم پایه بهبود نشان می دهد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    داداش تباراحمدی، کوروش، خیرخواه، مرجان، و رشیدی، علی جبار. (1397). تشخیص حملات سایبری پیشرفته با استفاده از مدل سازی رفتاری مبتنی بر پردازش زبان طبیعی. پدافند الکترونیک و سایبری، 6(3 (پیاپی 23) )، 141-151. SID. https://sid.ir/paper/243180/fa

    Vancouver: کپی

    داداش تباراحمدی کوروش، خیرخواه مرجان، رشیدی علی جبار. تشخیص حملات سایبری پیشرفته با استفاده از مدل سازی رفتاری مبتنی بر پردازش زبان طبیعی. پدافند الکترونیک و سایبری[Internet]. 1397؛6(3 (پیاپی 23) ):141-151. Available from: https://sid.ir/paper/243180/fa

    IEEE: کپی

    کوروش داداش تباراحمدی، مرجان خیرخواه، و علی جبار رشیدی، “تشخیص حملات سایبری پیشرفته با استفاده از مدل سازی رفتاری مبتنی بر پردازش زبان طبیعی،” پدافند الکترونیک و سایبری، vol. 6، no. 3 (پیاپی 23) ، pp. 141–151، 1397، [Online]. Available: https://sid.ir/paper/243180/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا