1. Introduction: Adding lime to increase the geotechnical characteristics of fine-grained soils, to achieve different goals always been done from ancient time. There are many techniques for stabilizing unstable slopes, among them lime treatment is a quick, simple and costeffective operation that can be incorporated into any unstable slopes. Some scientific techniques of soil treatment have been introduced by Bell (1996). The effect of lime on maximum compressive strength were studied by Indraratna (1996). He concluded that the addition of only 2% of lime results in a 50% increase in compressive strength and if this amount increases to the 5% of lime, the increase is doubled. Although lime stabilizes the soil rapidly after the treatment, the mechanical properties and strength of soil change over a long period of time (Bell, 1996; Sivapullaiah, Sridharan, & Ramesh, 2000). Recently a new method has been developed by which lime is injected into soil in the form of saturated solution. As it penetrates into the soil due to the gravity, it improves soil strength through pozzolanic reaction (Davoodi, 2007). Limited studies have been conducted to investigate the suitability of using saturated lime solution in slope stability. Optimum concentrations of lime solution and lime dosage were investigated by Pui Ling (2005) and Pedarla, Chittoori, Puppala, Hoyos, & Saride, (2010). Moreover, it is known by the studies of Khelifa (2010) that the curing time influences the physical properties of soil stabilized by lime, and considerably increases the shear strength of cohesive soils stabilized by lime. This study intends to assess the effect of calcium dosage on uniaxial strength of clayey soils stabilized by saturated lime solution in order to be applied in unstable slope stability and sediment control...