Introduction: Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when. Later Bjorner and Wachs extended this concept to non-pure complexes. Being defined in an inductive way, vertex decomposable simplicial complexes are considered as a well behaved class of complexes and has been studied in many research papers. Because of their interesting algebraic and topological properties, giving a characterization for this class of complexes is of great importance and is one of the main problems in combinatorial commutative algebra.....