الگوریتم های یادگیری چندبرچسبی به دلیل حجم و ابعاد بالای داده های چندبرچسبی و همچنین وجود نویز در آنها، با چالش های فراوانی مواجه هستند. انتخاب ویژگی یک تکنیک مؤثر برای برطرف کردن این چالش ها است. در این مقاله یک روش انتخاب ویژگی مبتنی بر یک رویکرد شورایی برای داده های چندبرچسبی ارائه شده است. در روش پیشنهادی، سه ماتریس تصمیم مختلف بر اساس معیار های ارزیابی ویژگی مختلف با درنظرگرفتن همگرایی ویژگی ها با برچسب های کلاس و همچنین افزونگی ویژگی ها نسبت به هم در فرایند انتخاب ویژگی مؤثر هستند. این سه ماتریس تصمیم در نهایت بر اساس یک رویکرد شورایی مبتنی بر مفهوم انتگرال فازی با هم ترکیب می شوند تا ارزیابی ویژگی ها بر اساس مقدار تجمیع شده صورت گیرد. برای ارزیابی عملکرد الگوریتم پیشنهادی، مقایساتی با چندین الگوریتم مشابه بر روی چند مجموعه داده مختلف صورت گرفته است. نتایج به دست آمده از آزمایش ها انجام شده، نشان دهنده عملکرد مناسب الگوریتم پیشنهادی در مقایسه با سایر الگوریتم ها است.