مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

57
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

16
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

کاشف: تشخیص گر دو مرحله ای فایل های اجرایی بداندیش ویندوزی

صفحات

 صفحه شروع 143 | صفحه پایان 156

چکیده

 رشد روزافزون بدافزارها, از تهدیدات مهم حوزه سایبری است و تشخیص آن ها را همواره با چالش هایی همراه کرده است. فایل های اجرایی بداندیش ویندوزی از طریق دستکاری ویژگی های موجود در سرآیند آن ها و مبهم سازی رفتار خود, فعالیت های مخرب را در سطح سیستم عامل هدف و یا هر برنامه کاربردی دیگر انجام می دهند. تشخیص نمونه های مشکوک بداندیش از میان حجم انبوهی از نمونه های ورودی و همچنین کشف بدافزارهای جدید و ناشناخته از موضوعاتی است که همواره مورد تحقیق پژوهشگران است. در این پژوهش, روشی ترکیبی برای تعیین میزان بداندیش بودن فایل های اجرایی مشکوک پیشنهاد شده است. روش پیشنهادی کاشف, شامل دو ماژول ایستا, برای استخراج ویژگی های سرآیند فایل اجرایی, و دو ماژول رفتاری برای استخراج ویژگی هایی برای تولید امضاء و مدل رفتاری بداندیش بر اساس روش های یادگیری ماشین است. هدف این پژوهش مشکوک یابی فایل های قابل اجرای ویندوزی از میان حجم انبوهی از فایل ها و تعیین میزان بداندیش بودن آن ها است. این روش, بدافزارها را بر اساس میزان احتمال بداندیش بودن اختصاص داده شده به هر فایل تشخیص می دهد. آزمایش ها, درصد بداندیشی شش نوع بدافزار را برای تشخیص گر مبتنی بر سرآیند فایل اجرایی, در بازه 7/62 تا 70 درصد, برای تشخیص گر مبتنی بر یارا, در بازه بین 8/70 تا 2/78 درصد, برای تشخیص گر مبتنی بر امضای رفتاری, 98 درصد و برای تشخیص گر مبتنی بر یادگیری ماشین با استفاده از الگوریتم یادگیری جنگل تصادفی 99 درصد نشان می دهد. همچنین نتایج آزمایش ها نشان داد که کاشف با تشخیص 94 درصدی بدافزارهای محافظت شده, بهبود دو درصدی در مقایسه با نتایج 10 محصول مشابه دارد و با تشخیص 98 درصدی بدافزارهای محافظت نشده, بهبود پنج درصدی در مقایسه با نتایج 10 محصول مشابه دارد.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button