مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

121
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

18
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

ارائه الگوریتمی جدید برای تشخیص اجتماع با استفاده از یادگیری تقویتی چندعاملی

صفحات

 صفحه شروع 101 | صفحه پایان 114

چکیده

 مسأله تشخیص اجتماع, یکی از مسائل چالش برانگیز بهینه سازی است که شامل جستجو برای اجتماعاتی است که به یک شبکه یا گراف تعلق دارند و گره های عضو هر یک از آن ها دارای ویژگی های مشترک هستند, که تشخیص ویژگی های جدید یا روابط خاص در شبکه را ممکن می سازند. اگرچه برای مسأله تشخیص اجتماع الگوریتم های متعددی ارائه شده است, اما بسیاری از آن ها در مواجه با شبکه های با مقیاس بزرگ قابل استفاده نیستند و از هزینه محاسباتی بسیار بالایی برخوردارند. در این مقاله, الگوریتم جدیدی مبتنی بر یادگیری تقویتی چندعاملی برای تشخیص اجتماع در شبکه های پیچیده ارائه خواهیم کرد که در آن, هر عامل یک موجودیت مستقل با پارامترهای یادگیری متفاوت هستند و بر اساس همکاری بین عامل ها, الگوریتم پیشنهادی به صورت تکرارشونده و بر اساس مکانیزم یادگیری تقویتی, به جستجوی اجتماعات بهینه می پردازد. کارایی الگوریتم پیشنهادی را بر روی چهار شبکه واقعی و تعدادی شبکه مصنوعی ارزیابی شده است, و با تعدادی از الگوریتم های مشهور در این زمینه مقایسه می کنیم. بر اساس ارزیابی انجام گرفته, الگوریتم پیشنهادی علاوه بر دقت بالا در تشخیص اجتماع, از سرعت و پایداری مناسبی برخوردار است و قابلیت رقابت و حتی غلبه بر الگوریتم های مطرح در زمینه تشخیص اجتماع را نیز داشته و نتایج الگوریتم پیشنهادی بر اساس معیارهای Q-ماجولاریتی و NMI متوسط بر روی شبکه های واقعی و مصنوعی به ترتیب 33/12%, 85/9% و بیش از 21 % بهتر از الگوریتم های مورد مقایسه است.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button