مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

138
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

26
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

ترکیب تکنیک های انتخاب نمونه و داده افزایی برای حل مسئله طبقه بندی مجموعه داده های نامتوازن

صفحات

 صفحه شروع 273 | صفحه پایان 283

چکیده

 در عصر کلان داده ها, تکنیک های تجزیه و تحلیل خودکار مانند داده کاوی به طور گسترده ای برای تصمیم گیری به کار گرفته شده و بسیار مؤثر واقع شده اند. از جمله تکنیک های داده کاوی می توان به طبقه بندی اشاره کرد که یک روش رایج برای تصمیم گیری و پیش بینی است. الگوریتم های طبقه بندی به طور معمول بر روی مجموعه داده های متوازن به خوبی عمل می کنند. با وجود این, یکی از مشکلاتی که الگوریتم های طبقه بندی با آن مواجه هستند, پیش بینی صحیح برچسب نمونه های جدید بر اساس یادگیری بر روی مجموعه داده های نامتوازن است. در این نوع از مجموعه داده ها, توزیع ناهمگونی که داده ها در کلاس های مختلف دارند باعث نادیده گرفته شدن نمونه های کلاس با تعداد نمونه کمتر در یادگیری طبقه بند می شوند؛ در حالی که این کلاس در برخی مسائل پیش بینی دارای اهمیت بیشتری است. به منظور مقابله با مشکل مذکور در این مقاله, روشی کارا برای متعادل سازی مجموعه داده های نامتوازن ارائه می شود که با متعادل نمودن تعداد نمونه های کلاس های مختلف در مجموعه داده ای نامتوازن, پیش بینی صحیح برچسب کلاس نمونه های جدید توسط الگوریتم یادگیری ماشین را بهبود می بخشد. بر اساس ارزیابی های صورت گرفته, روش پیشنهادی بر اساس دو معیار رایج در ارزیابی طبقه بندی مجموعه داده های نامتوازن به نام های «صحت متعادل» و «ویژگی», عملکرد بهتری در مقایسه با روش های دیگر دارد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button