مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

50
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

21
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

Adaptive Gaussian Density Distance for Clustering

صفحات

 صفحه شروع 205 | صفحه پایان 215

چکیده

 Distance-based clustering methods categorize samples by optimizing a global criterion, finding ellipsoid clusters with roughly equal sizes. In contrast, Density-based Clustering techniques form clusters with arbitrary shapes and sizes by optimizing a local criterion. Most of these methods have several hyper-parameters, and their performance is highly dependent on the hyper-parameter setup. Recently, a Gaussian Density Distance (GDD) approach was proposed to optimize local criteria in terms of distance and density properties of samples. GDD can find clusters with different shapes and sizes without any free parameters. However, it may fail to discover the appropriate clusters due to the interfering of clustered samples in estimating the density and distance properties of remaining unclustered samples. Here, we introduce Adaptive GDD (AGDD), which eliminates the inappropriate effect of clustered samples by adaptively updating the parameters during clustering. It is stable and can identify clusters with various shapes, sizes, and densities without adding extra parameters. The distance metrics calculating the dissimilarity between samples can affect the clustering performance. The effect of different distance measurements is also analyzed on the method. The experimental results conducted on several well-known datasets show the effectiveness of the proposed AGDD method compared to the other well-known clustering methods.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button